

PERSONALIZATION OF HADRON THERAPY FOR RADIORESISTANT CANCERS THROUGH BIOINDICATORS OF RADIORESISTANCE OR CONDITIONAL VULNERABILITY

MICHAEL STORY, PHD MAYO CLINIC JACKSONVILLE, FLORIDA HITRI+ WORKSHOP OCTOBER 18-19, 2024 THESSALONIKI, GREECE

BUILDING ON THE CLINICAL EXPERIENCE WITH CARBON ION THERAPY

TWO APPROACHES TO PERSONALIZATION

- Approach taken may be specific to a given tumor site
 - Tumor sample availability
 - Bioindicators of radiation response
 - Bioindicators for targeted therapy combined with high LET hadrons
- Head and Neck cancer
 - Tumor availability via surgery or biopsy
 - Omics approach to define radiation sensitivity
 - RNA sequencing
 - Isoform analysis
- Pancreatic cancer
 - 25-30% of pancreatic tumors have mutations in DDR genes
 - Conditional vulnerability to heavy particles
 - Targeted agents against specific DNA repair pathways

HEAD AND NECK CANCER

GENE EXPRESSION SUGGESTS COMMON AND NOVEL SIGNALING IN RADIORESISTANT GROUP

- GSEA and Ingenuity Pathways Analysis
- Leading Edge significant Enrichment Scores
- Cholesterol biosynthesis
- G2/M checkpoint
- PI3K_AKT_MTOR
- MTORC

	LR vs NED	R vs All Othe
HIF1a Signaling	1.63	1.61
ERK/MAPK Signaling	1.51	1.62
Tumor Microenvironment Pathway	1.67	1.2
Production of Nitric Oxide and Reactive Oxygen Species in Macrophages	0.71	1.43
mTOR Signaling	1	1.02
NF-ĸB Activation by Viruses	1	0.48
ILK Signaling	1.34	0.71
Role of CHK Proteins in Cell Cycle Checkpoint Control	-2	-0.45
AMPK Signaling	2	0.41
CDK5 Signaling	-1.41	-0.22
LPS-stimulated MAPK Signaling	0.45	0.42

ISOFORM ANALYSIS

High depth of coverage RNAseq

- Interrogate for the abundance of specific gene isoforms
 - Gene isoforms can be tissue or context specific
 - Changes in gene function (or not) based upon isoform expressed

NOVEL GENES

• Genes segregating the R cohort include:

- Radio/chemoresistance (GAGE12C, GAGE2E, SPINK1)
- Metabolic processes

(PNLIPRP3)

- Proliferation, migration, invasion and metastasis (PARM1, CDH12, CYYR1, GAGE12C)
- Inhibition of apoptosis and chemoresistance (SPINK1).
- GAGE genes not expressed in normal tissue with the exception of testes.
- Found on X chromosome
- Activation in tumors may be through demethylation
- In tumors GAGE1 and 2 are CD4+ T cell antigens

Γ-RAY AND ¹²C SURVIVAL IN 5 HNSCC CELL LINES

RBE VALUES VARY BASED UPON BIOLOGICAL ENDPOINT

Cell line	RBE _{SF10%}	RBE _{Dbar parm}	RBE _{Dbar AUC}	RBE _{D0}	Average	std dev	CV
SCC9	2.11	2.55	2.55	1.51	2.18	0.49	0.23
HN5	2.27	2.61	2.56	1.93	2.34	0.31	0.13
SqCC/Y1	2.08	2.58	2.57	1.51	2.19	0.51	0.23
HN31	1.92	2.14	2.12	1.61	1.95	0.25	0.13
Average	2.095	2.47	2.45	1.64			
std dev	0.14341 0.22136 0.22015 0.199						
CV	6.84539	8.96192	8.98577	12.134			
RBE _{SF10%}	RBE calculated using 10% survival						
RBE _{Dbar parm}	RBE calculated using mean inactivation dose derived from RCR parameters						
RBE _{Dbar AUC}	RBE calculated using mean inactivation dose derived from Reimann sum						
RBE _{DO}	RBE calculated as ratio of limiting slopes						

RBE DETERMINATIONS IN CURRENT TPS

- How applicable is a generalized RBE if the intrinsic radiosensitivity of tumors of a given type are highly variable?
- RBE says more about the low LET response than the effect of hadron exposure
- Heterogeneous dose distributions
- Fractionation regimens are moving to limited fraction numbers
- Input parameters for LEM include:

radius of cell nucleus radial energy deposition photon survival curve^{***} based upon α/β ratios At some point (D_T) the survival curve is linearized Biphasic survival curve

$$S(D) = \begin{cases} e^{-(\alpha_X d + \beta_X d^2)}; & d < D_t \\ e^{-(\alpha_X D_t + \beta_X D_t^2 + s_{\max}(d - D_t))}; & d \ge D_t \end{cases}$$

• **Why not use a model that does not require the determination of D_T^{**}

OVERESTIMATION OF CELL KILLING

- Biologically Effective dose calculations
 - Allows comparisons between different dose fractionation schemes
 - The doses used for the 2nd order polynomial are generally below the ablative doses used for SAbR

UNIVERSAL SURVIVAL CURVE AND SINGLE FRACTION EQUIVALENT DOSE: USEFUL TOOLS IN UNDERSTANDING POTENCY OF ABLATIVE RADIOTHERAPY

> CLINT PARK, M.D. M.S., LECH PAPIEZ, PH.D., SHICHUAN ZHANG, M.D., PH.D., MICHAEL STORY, PH.D., AND ROBERT D. TIMMERMAN, M.D.

IN SILICO MODELING OF TUMOR CONTROL PROBABILITY

 Repair Conditionally Repairable Damage (Lind et al., 2003) (* bi-exponential approximation)

$$S(d) = e^{-ad} + bde^{-cd}$$

• Transpose cell survival data to tumor response (Antonovic et al., 2015)

- N_{vox} is the number of voxels in an *in silico* tumor
- N_i is the number of cells in voxel i, (1 cm tumor contains 10⁸ tumor cells)

S_{i,i} (d,L,pO2) is the surviving fraction in voxel i at fraction j with dose d, oxygen partial pressure pO2, and LET L.

$$\text{TCP} = \exp\left\{-\sum_{i=1}^{N_{\text{vox}}} N_{i} \prod_{j=1}^{n} S_{i,j}(d, L, pO_{2})\right\}$$

Added tumor kickoff time and regrowth rates

RELATIVE CLINICAL EFFECTIVENESS (RCE)

Antonovic, et al., 2015

Model H&N across range of radiosensitivities

Conduct in vivo experiments for biological validation of the use of RCE

RELATIVE CLINICAL EFFECTIVENESS SSC9 CELLS

RCE 8 fx 12 C vs 30 fx photon:4.75RCE 8 fx 12 C vs 8 fx photon:2.75

• All models are bad but some are useful.

In vivo validation required

 If RBE cannot be abandoned addition of RCE may be an invaluable addition

PANCREATIC CANCER: CONDITIONAL VULNERABILITIES UNIQUE TO CHARGED PARTICLES

Witkiewicz et al, Whole-exome sequencing of pancreatic cancer defines genetic diversity and therapeutic targets Nature Communications 2015 Knudsen, E.S., et al., *Genetic Diversity of Pancreatic Ductal Adenocarcinoma and Opportunities for Precision Medicine*. Gastroenterology 2016

- Can ¹²C ion therapy be enhanced by targeting mutations associated with DNA repair and DNA replication stress?
- Would charged particles hold a particular advantage over X-rays for defects in <u>specific</u> DNA repair pathways?
- Could increased DNA damage be exploited to elicit an anti-tumor immune response?

THE DENSER THE ENERGY DEPOSITION PATTERNS THE MORE COMPLEX THE DNA DAMAGE

X-Ray Track Heavy-loa Track

DNA DAMAGE: LESION COMPLEXITY

Asaithamby et al, PNAS 2011

THE MAJOR DNA REPAIR PATHWAYS

nature reviews cancer	https://doi.org/10.1038/s41568-022-00535-5
Review article	Check for updates
Targeting DNA da	amage
response pathwa	ys in cancer

LESION COMPLEXITY INFLUENCES BIOLOGICAL RESPONSE

- 225 kVp X-ray: 2 keV/u
- Proton LET: 2.3 keV/u
- The RBE's (⁶⁰Co) are the same
 (1.1-1.15)

- HR repair deficient cell line Calu6
- H⁺ radioresponse tied to HR gene defects
- Higher LET particles?

Lung Cancer Cell Line Screen Links Fanconi Anemia/BRCA Pathway Defects to Increased Relative Biological Effectiveness of Proton Radiation Qi Liu PhD *, Priyanjali Ghosh BA *, Nicole Magpayo BS *, Mauro Testa PhD[†], Shikui Tang PhD[†] Liliana Gheorghiu MS *, Peter Biggs PhD[†], Harald Paganetti PhD[†], Jason A. Efstathiou MD. DPhili *, <u>Hsiao-Ming Lu PhD</u>[†], <u>Kathryn D. Held PhD</u> *, <u>Henning Willers MD</u> * 오 83

INCREASED RESIDUAL DNA DAMAGE AFTER ¹²C IRRADIATION

DNA REPAIR GENES AS TARGETS OF OPPORTUNITY

Response of a γ -ray resistant cell line 03.27 to combined irradiation with targeted DNA repair inhibitors.

Nu7441 (DNA-PKcs/NHEJ) BO2 (Rad51/HR) Ku55933 (ATM) AZD6738 (ATR)

PDAC CANCER CELLS ARE SUSCEPTIBLE TO DDR INHIBITORS

Group	MID(Gy)	SER	VAR	StDEV	p value
γ-rays + DMSO	3.61	1.00	0.02	0.22	
γ-rays + <mark>DNA-</mark> PKi	1.24	2.92	2.18	0.88	0.0041
γ-rays + DNA-RAD51i	3.57	1.01	3.36	1.83	0.9649
γ-rays + DNA-ATRi	3.89	0.93	0.07	0.31	0.0739
¹² C + DMSO	1.04	1.00	0.03	0.23	
¹² C + DNA-PKi	0.59	977	0.00	0.17	0.0100
¹² C + DNA-RAD51i	0.69	1.51	0.00	0.17	0.0264
¹² C + DNA-ATRi	0.81	1.29	0.65	0.73	0.1565

Group	MID(Gy)	SER	VAR	StDEV	p value
γ-rays + DMSO	2.26	1.00	1.22	1.56	
γ-rays + DNA-PKi	1.06	2.14	0.01	1.11	0.0241
γ-rays + DNA-RAD51i	3.28	0.69	0.11	1.17	0.1772
γ-rays + DNA-ATRi	2.77	0.82	2.87	2.18	0.5961
¹² C + DMSO	0.94	1.00	0.03	0.24	
¹² C + DNA-PKi	0.52	1.81	0.01	0.18	0.0056
¹² C + DNA-RAD51i	0.40	2.37	0.05	0.23	0.0051
¹² C + DNA-ATRi	0.82	1.15	0.04	0.26	0.3753

DIFFERENTIAL RESPONSE OF 03.27 CELLS TO DDR INHIBITORS BASED UPON POSITION IN BRAGG CURVE

¹²C Spread Out Bragg Peak vs Entry

• 78 keV/u vs 13 keV/u

	Group	MID(Gy)	SER	VAR	StDEV	p value
	¹² C + DNA-PKi	0.59	1.77	0.00	0.17	0.0100
	¹² C + DNA-RAD51i	0.69	1.51	0.00	0.17	0.0264
	¹² C + DNA-ATRi	0.81	1.29	0.65	0.73	0.1565
Relative survival	10^{-1}					Control DNA-PKi Rad51i ATRi

Spread Out Bragg Peak

Group	MID(Gy)	SER	VAR	StDEV	p value
¹² C (Entry)	2.39	1.00	0.24	0.81	0.0004
¹² C (Entry) + DNA-PKi	1.02	2.35	0.18	0.57	0.0033
¹² C (Entry) + DNA-RAD51i	2.13	1.12	0.02	0.51	0.4293
¹² C (Entry) + DNA-ATRi	2.21	1.08	0.07	0.69	0.5987

Entry

TREATMENT SELECTION VIA MUTATIONS IN DNA REPAIR GENES

- Patients undergo genetic tests at higher frequency
- Genetic tests are scaling to include larger and larger gene sets
- Would charged particles hold a particular advantage over X-rays for defects in specific DNA repair pathways?
- Could increased DNA damage be exploited to elicit an anti-tumor immune response?

Black

Blue

Purple

Point mutations

Structural variants

Deletions Amplifications

PDAC Cell Line	DNA Damage Response	Other Genes of Interest
CAPAN-1	BRCA2 V1532Sfs*2, FANCA 1196*, RAD50, PRKDC	CDK6, MYC
MIA-PaCa-2	KMT2C K724*	ARID1A Q321*, ARID1B
PANC-1		KRAS, AKT2
PANC.02.03	BRCA2, BAP1, XPC, FANCD2, SETD2, ATRIP, FANCG	MYC, RB1, MAPK1, ARID1B
PANC.03.27	FANCC	CDK4, RAF1, MAPK1, FBXW7
PANC.04.03	RAD21 X33_splice, KMT2C D372Yfs*15	ATRX-PGK1, TOP1
PANC.10.05	BRCA2, CHEK2, RAD51C, FANCD2, PRKDC, XPC	MYC, EP300 K1488*, FBXW7, RB1

** Once caveat is the determination of mutation status being somatic vs. germinal

Under analysis

BIOLOGY WILL DRIVE ADVANCES IN CHARGED PARTICLE RADIOTHERAPY

• Physics: the accuracy of dose delivery and imaging will continue to improve outcomes, but do so incrementally.

- The problem is now more engineering than physics.
- The greatest benefit for protons over X-rays is conformality.
 - Limiting intermediate doses to normal tissues.
- The benefit for heavier charged particles over protons is biology.
 - The biological uncertainties are greater for charged particle therapy.
 - There are potentially distinct advantages due to novel biology with charged particle exposure that need better defining –and exploiting.
 - Exploitation requires moving from population-based advances to individualizing therapies based upon the vulnerability identified for a given individual.

THANK YOU FOR YOUR ATTENTION

Questions?

- Thanks to:
- <u>UT Southwestern Medical Center</u>
- Lianghao Ding, MD, PhD, Anthony Davis, PhD, Brock Sishc, PhD

- <u>CNAO</u>
- Angelica Facoetti, PhD

- State of Texas and UT Southwestern: MDS
- David A. Pistenmaa MD, PhD Distinguished Chair in Radiation Oncology: MDS