The HIT facility, technology, clinical applications and research: novel approaches in particle therapy

Prof. Dr. Andrea Mairani

Heidelberg Ion Beam Therapy Center (HIT) Department of Radiation Oncology, University Clinic Heidelberg German Cancer Research Center (DKFZ) National Center for Tumor Diseases (NCT) Centro Nazionale di Adroterapia Oncologica (CNAO)

Heidelberg Ion-Beam Therapy Center (HIT)

Heidelberg Ionenstrahl-Therapie Centrum

How to move forward ion beam therapy? Technology

- Fast Monte Carlo calculations for all beam modalities
- Decrease range uncertainties
- Change the beam modality: ⁴He ion vs. proton beams (¹²C vs. ¹⁶O ions)
- Improve the delivery (set-up) technique: arc irradiation (high LET advantage)
- Multi-Ion Irradiation (also biological advantage)
- FLASH-like irradiation (also biological advantage)

How to move forward ion beam therapy? Biology

- "Novel" biological model
- Arc irradiation with high LET advantage for hypoxic tumour
- FLASH-irradiation (and mini-beams): sparing normal tissue
- Combined treatments: DNA damage repair interface (DDRi) drugs + external ion beam therapy

A Fast Monte Carlo Engine for Particle Therapy

Monte KaV

Development and Benchmarking of a Monte Carlo Dose **Engine for Proton Radiation Therapy**

Peter Lysakovski^{1,2}, Alfredo Ferrari¹, Thomas Tessonnier¹, Judith Besuglow^{1,2,3,4,5}, Benedikt Kopp¹, Stewart Mein^{1,3,4,5} Thomas Haberer¹, 2 Jürgen Debus^{1,5,6} and 2 Andrea Mairani^{1,7,3,8}*

MEDICAL PHYSICS The International Journal of Medical Physics Research and Practice

RESEARCH ARTICLE | a Open Access | @ (i) @ (S)

Development and benchmarking of the first fast Monte Carlo engine for helium ion beam dose calculation: MonteRay

Peter Lysakovski, Judith Besuglow, Benedikt Kopp, Stewart Mein, Thomas Tessonnier, Alfredo Ferrari, Thomas Haberer, Jürgen Debus, Andrea Mairani

First published: 21 December 2022 | https://doi.org/10.1002/mp.16178

MEDICAL PHYSICS

The International Journal of Medical Physics Research and Practice

RESEARCH ARTICLE **a** Open Access (cc) (i)

Development and validation of MonteRay, a fast Monte Carlo dose engine for carbon ion beam radiotherapy

Peter Lysakovski, Benedikt Kopp, Thomas Tessonnier, Stewart Mein, Alfredo Ferrari, Thomas Haberer, Jürgen Debus, Andrea Mairani

First published: 25 September 2023 | https://doi.org/10.1002/mp.16754

- MonteRay for proton, helium and carbon ion beams is capable of accurate dose calculations when evaluated against measurement and FLUKA simulations
- Speedups of 20-60x vs. FLUKA on same hardware
- Combinatorial Geometry has been implemented
- Handling different biological models

Extension to IORT electrons and VHEE for FLASH radiotherapy recently done

> Med Phys. 2024 Jun 8. doi: 10.1002/mp.17180. Online ahead of print.

Development and verification of an electron Monte Carlo engine for applications in intraoperative radiation therapy

Luisa Rank ¹ ², Peter Lysakovski ¹, Gerald Major ³, Alfredo Ferrari ², Thomas Tessonnier ¹, Jürgen Debus¹⁴⁵, Andrea Mairani¹⁴⁵⁶⁷

Funded by:

Federal Ministry of Education and Research

Grant No. 13GW0436A

Artificial Neural Networks (ANNs) for particle dose calculation

Heidelbera Ionenstrahl-Therapie Centrun

- **Question:** Can we estimate the delivered dose in a \bullet proton treatment plan using ANNs?
- **Motivations:** \bullet
	- Speed
	- Accuracy \blacksquare

ANN dose calculation:

Challenges:

- Many input/output parameters
- Informative data to train \blacksquare
- Heterogenities with distant correlations \blacksquare between inputs and the outputs

The "Pencil Beam Approach" to training the neural network

Results:

Heidelberg Ionenstrahl-Therapie Centrum

 γ -index analysis ([1%, 3 mm])

Neishabouri et al. (2020). Long short-term memory networks for proton dose calculation in highly heterogeneous tissues. Medical Physics.

Dual-layer spectral CT imaging for particle therapy

Motivation: particle therapy and range uncertainties

Heidelbera Ionenstrahl-Therapie Centrur

Dual-layer spectral CT imaging for particle therapy

Pre-clinical evaluation of patient-specific SPR estimates with DLCT \rightarrow

Heidelbera Ionenstrahl-Therapie Centrur

- DLCT provides improved particle range prediction compared to conventional CT \rightarrow
	- \rightarrow Reduced uncertainty caused by intra- and inter-patient tissue composition differences during treatment planning

Dual-layer spectral CT imaging for particle therapy

Dosimetry study in anthropomorphic head phantom:

- Most advantageous in highly heterogeneous structures \rightarrow
- DLCT-based SPR prediction may improve ion range calculation and eventually lead to \rightarrow reduced range uncertainty margins
- \rightarrow Further clinical investigations using larger patient cohorts and examining other treatment regions are foreseen

A successful story: Helium ion therapy from research to clinic

Physics in Medicine & Biology

TOPICAL REVIEW

Roadmap: helium ion therapy

OPEN ACCESS

RECEIVEI 6 September 2021 **REVISED** 10 February 2022

ACCEPTED FOR PUBLICATI

Andrea Mairani^{1,2,3,4}, Stewart Mein^{1,3,4,5}, Eleanor Blakely⁶ (D, Jürgen Debus^{1,3,4,5,7}, Marco Durante^{8,21} (D, Alfredo Ferrari¹, Hermann Fuchs^{9,10} (D., Dietmar Georg^{9,10} (D., David R Grosshans¹¹, Fada Guan^{11,19} (D., Thomas Haberer¹, Semi Harrabi^{1,4,5,7,20}, Felix Horst⁸, Taku Inaniwa^{12,13}, Christian P Karger^{4,18} (0, Radhe Mohan¹¹ (**b**), Harald Paganetti^{14,15} (**b**), Katia Parodi¹⁶ (**b**), Paola Sala¹⁷ (**b**), Christoph Schuy⁸, Thomas Tessonnier¹, Uwe Titt¹¹ and Ulrich Weber⁸

MEDICAL PHYSICS | WEBINAR | SPONSORED

Helium ion beam therapy

19 Aug 2022 Sponsored by Physics in Medicine & Biology

Available to watch now, the IOP Publishing journal, Physics in Medicine & Biology, discusses the current state-of-the-art and future directions of helium ion therapy

INTERNATIONAL JOURNAL OF ASTRO RADIATION ONCOLOGY · BIOLOGY · PHYSICS nstitute of Physics and ngineering in Medicine

> About Contact Articles Publish Multimedia $CME₇$ **Topics**

AUDIO

July 15, 2023

Red Journal Podcast July 15, 2023

$966t$

Advances in Particle Therapy - Proton Track-end Counts and Helium Ion Treatment Planning

ERI

CNAC

Med **N**
Austron

Networking and cooperation with other institutions

MASSACHUSETTS
GENERAL HOSPITAL

 $M\left(\frac{\Delta}{1811}\right)$

dkfz.

Physics in Medicine & Biology

TOPICAL REVIEW

Roadmap: helium ion therapy

ACCEPTED FOR PUBLICATION 8 April 2022

PUBLISHED 5 August 2022

Original content from this work may be used under the terms of the Creative **Commons Attribution 4.0** licence.

Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Thomas Haberer¹, Semi Harrabi^{1,4,5,7,20}, Felix Horst⁸, Taku Inaniwa^{12,13}, Christian P Karger^{4,18} (D, Radhe Mohan¹¹ (\bullet , Harald Paganetti^{14,15} (\bullet , Katia Parodi¹⁶ \bullet , Paola Sala¹⁷ \bullet , Christoph Schuy⁸, Thomas Tessonnier¹, Uwe Titt¹¹ and Ulrich Weber⁸ ¹ Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany ² National Centre of Oncological Hadrontherapy (CNAO), Medical Physics, Pavia, Italy ³ Division of Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, 69120 Heidelberg, Germany National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany ⁵ German Cancer Consortium (DKTK) Core-Center Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States of America ⁷ Clinical Cooperation Unit Radiation Oncology, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany ⁸ GSI Helmholtzzentrum für Schwerionenforschung, D-64291 Darmstadt, Germany

- ⁹ Division of Medical Physics, Department of Radiation Oncology, Medical University of Vienna, Austria
- ¹⁰ MedAustron Ion Therapy Center, Wiener Neustadt, Austria
- ¹¹ The University of Texas MD Anderson cancer Center, Houston, Texas, United States of America
- ¹² Department of Accelerator and Medical Physics, Institute for Quantum Medical Science, QST, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan

Andrea Mairani^{1,2,3,4}, Stewart Mein^{1,3,4,5}, Eleanor Blakely⁶ (D, Jürgen Debus^{1,3,4,5,7}, Marco Durante^{8,21} (D, Alfredo Ferrari¹, Hermann Fuchs^{9,10} (0, Dietmar Georg^{9,10} (0, David R Grosshans¹¹, Fada Guan^{11,19} (0,

- ¹³ Medical Physics Laboratory, Division of Health Science, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita, Osaka 565-0871, Japan
- ¹⁴ Department of Radiation Oncology, Massachusetts General Hospital, Boston, United States of America
- ¹⁵ Harvard Medical School, Boston, United States of America
- ¹⁶ Ludwig-Maximilians-Universität München, Department of Experimental Physics-Medical Physics, Munich, Germany
- ¹⁷ INFN Sezione di Milano, Via Celoria 16, Milano I-20133, Italy
- ¹⁸ Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- ¹⁹ Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, 06510, United States of America
- ²⁰ National Center for Tumor Diseases (NCT), Heidelberg University Hospital, 69120 Heidelberg, Germany ²¹ Technische Universität Darmstadt, Institut für Physik Kondensierter Materie, Darmstadt, Germany

THE UNIVERSITY OF TEXAU

MDAnderson

GSI Helmholtzzentrum für Schwerionenforschung

Therapiezentrum

INFN

LUDWIG-

MAXIMILIANS-

UNIVERSITÄT

MÜNCHEN

Heidelberg Ionenstrahl-Therapie Centrum

UniversitätsKlinikum Heidelberg

Figure 1. Roadmap for development, investigation and clinical translation of helium ion beams. Topics include the following: past, present and future clinical trials, physical characterization of helium ions, accelerator/facility start-up, imaging/verification techniques, dose calculation algorithms, TPS development and validation, biological effects (in vitro versus in vivo), clinical modeling and novel applications.

1 st treatment with scanned helium beams

Intracranial anaplastic hemangiopericytoma Summer 2021 – 60GyRBE – 30 fractions / Re-irradiation (1st treatment 60GyRBE-2015)

1 st treatment with scanned helium beams

Helium (mMKM) **Protons** (1.1) Carbon (LEM I)

ARTEMIS – MRI guided particle therapy

MR-guided proton and ion beam therapy (*with MonteRay*) – ARTEMIS program @ HIT

FIGURE 5 | For 200 MeV protons in water, 2D dose distributions calculated with MonteRay (A) and FLUKA (B) are shown in a plane perpendicular to the 2 T magnetic field. In (C), Lateral profiles for 200 MeV protons in water and with magnetic field strengths of 0 T, 0.5 T, 1 T, and 2 T are displayed at the location of the BP. MonteRay's results are indicated by a red line while FLUKA's results are displayed as blue dots.

Particle Arc Therapy (PAT): delivery which makes use of rotational motion of gantry and/or patient (step-and-shoot or dynamic rotation).

Treatment Optimization:

Heidelbera Ionenstrahl-Therapie Centrum

Conventional vs. PAT

- i. Improved target conformity +
- ii. Improved Robustness +

SCIENTIFIC ARTICLE | VOLUME 6, ISSUE 3, 100661, MAY 2021 | La Download Full Issue Spot-Scanning Hadron Arc (SHArc) Therapy: A Study With Light and Heavy lons Stewart Mein, PhD . Thomas Tessonnier, PhD . Benedikt Kopp, MS . .. Jürgen Debus, MD, PhD . Thomas Haberer, PhD . Andrea Mairani, PhD & \boxtimes . Show all authors Open Access • Published: February 03, 2021 • DOI: https://doi.org/10.1016/j.adro.2021.100661 • Check for updates

iii. LET Redistribution +

iv. Delivery efficiency +

RESEARCH ARTICLE | a Open Access | co (i)

Spot-scanning hadron arc (SHArc) therapy: A proof of concept using single- and multi-ion strategies with helium, carbon, oxygen, and neon ions

Stewart Mein XI, Benedikt Kopp, Thomas Tessonnier, Jakob Liermann, Amir Abdollahi, Jürgen Debus, Thomas Haberer, Andrea Mairani X

First published: 19 June 2022 | https://doi.org/10.1002/mp.15800 | Citations: 3

Biological Dose Optimization for Particle Arc Therapy Using Helium and Carbon Ions

Stewart Mein PhD * $^{\frac{1}{1}, \frac{1}{1}, \frac{5}{5}}$ 8, \boxtimes 37, Thomas Tessonnier PhD \parallel , Benedikt Kopp PhD * $^{\frac{1}{1}, \frac{5}{1}, \frac{5}{5}}$, Christian Schömers PhD \parallel , Semi Harrabi MD ^{1, 8}, L. Amir Abdollahi MD, PhD *, ^{1, 1}, 8, Iürgen Debus MD, PhD *, ^{1, 1, 8}, L. 1, Thomas Haberer PhD L. Andrea Mairani PhD *, L, ¶ A ⊠

Mein et al, *Adv. Rad. Onc. 2021*

IMPT for pancreatic cancer treatment

Mein et al *2022b*

Carbon

Target LET enhancement using arc delivery. *Pancreatic Pancreatic*

Adenocarcinoma

Biophysical Verification of Carbon Ion Arc Therapy

Tessonnier, Filosa et al, *Adv. Rad. Onc. 2024*

Biophysical Verification of Carbon Ion Arc Therapy

Heidelbera Ionenstrahl-Therapie Centrum

Survival Fraction

In vitro validation – A549a) IMPT $_{PO}$ C b) SHArc_{PO} C $IMPT_{BO}$ **SHArc_{BO}** $10⁰$ $10⁰$ $p = 0.004$ $0.8 0.8$ $p = 0.4942$ 10^{-1} 10^{-1} Survival Fraction 0.6 $0.6₁$ mMKM F MKM P2 0.4 0.4 10^{-2} 10^{-2} ata P1 Data P2 $0.2 0.2 -$ Data P3 Data P4 10^{-3} 10^{-3} 2 6 0 $\overline{}$ 4 6 0.0 0.0 Hypoxia Normoxia Dose [Gy] Hypoxia Normoxia Dose [Gy] Hypoxia **Normoxia** $p = 0.0153$ $0.8 0.8$ $p = 0.1848$ $0.6 0.6$ **IMPT_{BO}** Foci/Nucleus
0.2
-
- 0.4 0.2 **SHArc_{BO}** 0.0 0.0 Hypoxia Normoxia Hypoxia Normoxia

Tessonnier, Filosa et al, *Adv. Rad. Onc. 2024*

Multi-ion therapy (MIT): a particle therapy technique which involves the delivery of ≥2 charged particle species in a single fraction (e.g., p, He, C, O, and/or Ne ions) **p**

Objective(s): design treatments which exhibit features unattainable using a single ion species — primary clinical aims are dependent on optimization/delivery technique (e.g., to improve dosimetric features, reduce physical and radio-biological uncertainties and/or improve TCP/NTCP)

Status: research and development, with one clinical program running for patient treatments

• **Ion selection**: end-point and optimization method dependent. However, in general, all proposed MIT techniques to-date involve mixture of 2 or more light and heavy ion species. Therefore, at the very least, combining a "lower" and "higher" LET particle is appropriate, in order to balance physical and biological properties (e.g., LET & RBE levels)

• **Optimization algorithm:**NIRS (JP) $\|\hspace{1cm}$ GSI (DE) HIT (DE) **Intensity modulated Combined ion-beam Multi-ion kill painting composite particle therapy constant RBE (CICR)** Aim: overcome hypoxia-related **(IMPACT)** tumor radio resistance Aim: robust physical/biological Aim: expand therapeutic window optimization and OAR sparing via optimization of physical dose and LET robustness: $\left[\uparrow\right]$ phys. $\left[\uparrow\right]$ bio. 120 z [mm] T.T Böhlen et al **Phys. Med. Biol.** 2012 Kopp, Mein et al **IJROBP** 2020 Tinganelli et al **Sci. Rep.** 2015 Inaniwa et al. **Phys. Med. Biol.** Mein et al **Med Phys** 2022 O Sokol et al **Phys. Med. Biol.** 2019 2017, 2018, 2020, 2021

MIT Validations: *physics*

All new delivery methods must be verified experimentally

+

CICRC-p

Kopp, Mein et al, *IJROBP 2020*

MIT Validations: *biology*

All new delivery methods must be verified experimentally

in vitro

(GL261)

RBEav variation ~1-3 % in the target

Kopp, Mein et al, *IJROBP 2020*

+

CICRC-p

LBERG

UNIVERSIT` **HOSPITAL**

rohic head phante

SHArc_{MIT} (2-arc): improved physical dose and RBE homogeneity in the target *Pancreatic*

Adenocarcinoma

Which biological model?: ¹²C ions *in vitro* considerations

Clinical settings (SOBP)

Heidelbera Ionenstrahl-Therapie Centrur

- 4 cell lines in vitro (low and middle α/β \bullet values), 6 LET $_{d}$, 4 dose levels
- > 2 biological models \bullet
- **Full Monte Carlo characterization** \bullet

Mein, etl al 2019 IJROBP

Which biological model?: ¹²C ions *in vivo* considerations

Single energy slice and clinical settings (SOBP)

Heidelbera Ionenstrahl-Therapie Centrun

- Rat spinal cord irradiation (low α/β tissue)
- **Full Monte Carlo characterization**
- Same tendencies found in vitro (assuring)

Mein, et al 2019 IJROBP

Do we observe clinically the limitations of a biological model?

- Prostate Trial (IPI) (Habl et al. 2014, 2016, Eichkorn et al. 2022)
- **66 Gy (RBE), RBE = 1.1 1H** vs. **66 Gy (RBE) LEM I a/β = 2 Gy 12C** in 20 fx

See also Habl et al. (IJROBP, 2016)

BioP **BERG HOSPITAL**

Photon clinical data from literature

J. Besuglow, …, A. Mairani 2023 IJROBP

How do improve the clinical treatment ? Learning from the cohort

J. Besuglow, …, A. Mairani 2023 IJROBP

- Prostate Trial (IPI) (Habl et al. 2014, 2016, Eichkorn et al. 2022)
- **66 Gy (RBE), RBE = 1.1 1H** vs. **66 Gy (RBE) LEM I a/β = 2 Gy 12C** in 20 fx

J. Besuglow, …, A. Mairani 2023 IJROBP

Learning from 1H and 12C patients cohort for 4He planning

J. Besuglow, …, A. Mairani 2023 IJROBP

The "UNIfied and VERSetile bio response Engine" - UNIVERSE

- UNIVERSE: multipurpose mechanistic modelling framework of radiation action
- **Goal: Translating** the action of "effect-modifiers" (e.g., DNA damage inhibition) from readily available photon data to charged particle scenarios

Open Access Article

Modeling the Effect of Hypoxia and DNA Repair Inhibition on Cell Survival after Photon Irradiation

Heidelberg Ionenstrahl-Therapie Centrum

by **C** Hans Liew 1.2.3,4,5,6 \boxtimes **C** Carmen Klein 2.3,4,5 \boxtimes **C C C** Frank T. Zenke ⁷ \boxtimes **C C** Amir Abdollahi 2.3,4,5 \boxtimes **C Jürgen Debus** 1,2,3,4,5,6 \boxtimes **(A)** Ivana Dokic 2,3,4,5,*,t \boxtimes and **A** Andrea Mairani 2,3,4,5,*,t \boxtimes

ation Oncology • Biology • Physics ASTRO

Physics Contribution

Deciphering Time-Dependent DNA Damage Complexity, Repair, and Oxygen Tension: A **Mechanistic Model for FLASH-Dose-Rate Radiation Therapy**

Hans Liew, MSc, * binds Stewart Mein, PhD, * binds Ivana Dokic, PhD, * binds Thomas Haberer, PhD, Jürgen Debus, MD, PhD, 1.8.1.1.4 Amir Abdollahi, MD, PhD, * \overline{h} . and Andrea Mairani, PhD^{#,**}

Open Access Article

Impact of DNA Repair Kinetics and Dose Rate on RBE Predictions in the **UNIVERSE**

by **O** Hans Liew 1,2,3,4,5,6 \boxdot **O** Stewart Mein 2,3,4,5 \boxdot **O** Thomas Tessonnier 5 \boxdot **O** Christian P. Karger 3,7 \boxdot **O** Amir Abdollahi 2,3,4,5 ⊠ Jürgen Debus 1,2,3,4,5,6 ⊠ Vana Dokic 2,3,4,5 ⊠ and A Andrea Mairani 2,3,4,5,* ⊠

Open Access Article

Modeling Direct and Indirect Action on Cell Survival After Photon Irradiation under Normoxia and Hypoxia

by **A** Hans Liew 1,2,3,4,5,6 \boxtimes **C** Stewart Mein 2,3,4,5 \boxtimes **C** Jürgen Debus 1,2,3,4,5,6 \boxtimes **C** Ivana Dokic 2,3,4,5 \boxtimes and Andrea Mairani 2,3,4,5,* \boxtimes

Combined DNA Damage Repair Interference and Ion Beam Therapy: Development, Benchmark and Clinical Implications of a Mechanistic **Biological Model**

Hans Liew, MSc^{**} \boxdot • Sarah Meister, MSc • Stewart Mein, PhD • ... Jürgen Debus, MD, PhD • Ivana Dokic, PhD • Andrea Mairani, PhD A \boxtimes • Show all authors • Show footnotes

Do We Preserve Tumor Control Probability (TCP) in FLASH Radiotherapy? A **Model-Based Analysis**

by Nans Liew 1.2.3 Stewart Mein 1.2.3.4 2 Thomas Tessonnier 5, 2 Amir Abdollahi 1.2.3 2 Jürgen Debus 2.3.6.7 ■ Ivana Dokic 1,2,3 and ■ Andrea Mairani 5,8,* □

The "UNIfied and VERSetile bio response Engine" - UNIVERSE

Hypothesis

RSF (as well as K_{iDSB}/K_{cDSB}) values remain constant under change of radiation **quality** → UNIVERSE can be extended to charged particles by solely implementing the heterogeneous dose distributions of ions (utilizing GPUs)

Combined DNA Damage Repair Interference and Carbon Ion Beam Therapy

Heidelberg Ionenstrahl-Therapie Centrum

(a)M059K cells and their DNAdependent protein kinase (DNA-PK) deficient mutant (M059J)

(b) CHO cells and their two NHEJ response-deficient mutants (V3 cell line is DNA-PKcs-deficient and xrs-5 cell line is Ku80-deficient)

HPV Negative HPV Positive **HPV Negative**

HPV Positive

- Mostly with electrons and protons
- Great advantage: very fast (< 0.1 s) >

Reduced effect of moving targets

• Coupled with heavier ions characteristics (RBE and OER) could be the ultimate

Conv. - 5 field 1/10th dose

2000

2500

3000

radiation therapy technique

Helium Ion FLASH

Tessonnier, Mein, Walsh et al. IJROBP 2021

Ion FLASH Radiotherapy: in vitro

Heidelberg Ionenstrahl-Therapie Centrum

• mechanisms behind FLASH: Investigate oxygen consumption during UHDR

irradiation across large LETd range: with electrons, proton, helium, carbon and

oxygen ions

Heidelbera Ionenstrahl-Therapie Centrur

Karle, Liew, Tessonnier et al, J. Med. Phys., 2024, accepted Manuscript

• mechanisms behind FLASH: Investigate oxygen consumption during UHDR

irradiation across large LETd range: with electrons, proton, helium, carbon and

oxygen ions

teidelbera Ionenstrahl-Therapie

Karle, Liew, Tessonnier et al, J. Med. Phys., 2024, accepted Manuscript

• mechanisms behind FLASH: Investigate oxygen consumption during UHDR irradiation

across large LETd range: with electrons, proton, helium, carbon and oxygen ions

Karle, Liew, Tessonnier et al, J. Med. Phys., 2024, accepted Manuscript

 \boldsymbol{H}

Heidelberg Ionenstrahl-Therapie Centrum

Conclusions

- Many technological and biological advancements are possible in ion beam therapy
- Clinical employment of novel approaches is undergoing at HIT
- Several clinical indications would benefit from a modernization of ion beam therapy
- Our mission at HIT is to facilitate and to support this modernization.

Thank you for your attention!

