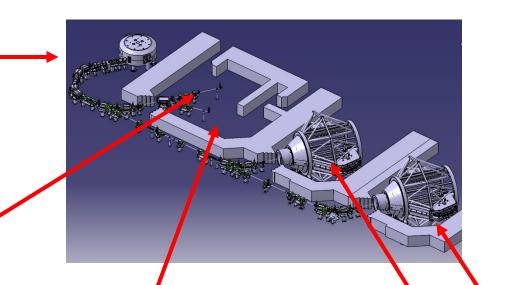

### The Krakow proton therapy facility, lessons learnt

- the Cyclotron Centre Bronowice project at the Institute of Nuclear Physics

### Pawel Olko Institute of Nuclear Physics IFJ PAN, Kraków, Poland

4


## Cyclotron Centre Bronowice: from the first proposal to the first patient (2006–2016)



## What was built ?



IBA C-230 cyclotron





experimental room



eye treatment



**2** scanning gantries

Fully functional research (with laboratories and experimental hall) and clinical proton therapy center



### 20 years of experience in 20 minutes

- 1. Why the project in Kraków?
- 2. Key elements of the project
- 3. Building team
- 4. Patients and research
- 5. Lessons learned





## Why applications for proton therapy project at IFJ PAN Kraków were succesful?

- 1. Human potential at IFJ PAN
- 2. Experience with cyclotrons
- 3. Experience in fast neutron therapy
- 4. Eye proton therapy project
- 5. Good contacts between physics and medicine
- 6. Some local politicians helpful





- IFJ PAN the biggest institute of
   Polish Academy of Sciences: 570
   employees (220 Ph.D) + 90 PhD.
   Students
- High energy physics (CERN), nuclear physics, dosimetry labs, radiation physics, radiation biology
- Workshop: technicians and engineers
- Construction and exploitation of three cyclotrons first cyclotron in Poland from 1955



# Why applications for proton therapy project at IFJ PAN Kraków were succesful?

- 1. Human potential at IFJ PAN
- 2. Experience with cyclotrons

# 3. Experience in fast neutron therapy

- 4. Eye proton therapy project
- 5. Good contacts between physics and medicine
- 6. Some local politicians helpful



Experience in fast neutron radiotherapy with Centre of Oncology, at 12.5 MeV D U-120 cycltoron

#### Neutron radiotherapy unit

-radiotherapy unit developed at IFJ- 5.6 MeV neutrons, horizontal beam only

### **Patients**

- 486 patients (1978 1995)
- advanced head & neck cancer

- non-operable recurrences after mastectomy

#### Lessons learned:

- work with patiants
- building radiobiology and dosimetry teams



# Why applications for proton therapy project at IFJ PAN Kraków were succesful?

- 1. Human potential at IFJ PAN
- 2. Experience with cyclotrons
- 3. Experience in fast neutron therapy
- 4. Eye proton therapy project
- 5. Good contacts between physics and medicine
- 6. Some local politicians helpful



Between 2011 – 2026 126 eye cancer patients from Krakow Universty Hospitals (Prof. B. Romanowska-Dixon) were treated Eye treatment room at 60 MeV cyclotron developed at IFJ PAN 2001 -2011

# Support from IAEA (S. Vatnistky)

- dosimetry
- training of two medical physicists at HMI Berlin and Clatterbrigde

Building up team and competences:

- dosimetry and QA
- therapy planning
  2006 -2011: from 6 to 17
  physicists



2. Key elements of the project



# Key elements of the project (1)

#### The National Consortium of Hadron Radiotherapy

### Scientific environment

- Location
- Funds
- Tender specification
- Construction
- Acceptance tests
- Commissioning

#### Founded September 2006, 14 members

**Kraków:** IFJ PAN, AGH University, Jagiellonian University, Center of Oncology, Collegium Medicum UJ

**Warsaw:** Center of Oncology, Medical University, National Center of Nuclear Research, Warsaw Polytechnic, Warsaw University

Kielce: Holycross Center of Oncology

Silesia: Center of Oncology, Gliwice, Silesia University

Poznań: Center of Oncology

#### The major role of the consortium to:

- share responsibilities
- get together clinic and research
- moderate critics and ambitions





# 2. Key elements of the project (2)

- Scientific environment
- Location
- Funds
- Tender specification
- Construction
- Acceptance tests
- Commissioning



### Very good location of IFJ PAN

- Close access to A4 highway (2 km), airport (10 km), public transport
- In the vicinity of the oncology clinic with high patient number
- In a place with the very good access, public transport etc
- Close to universities and research institutes
- Own building plot at IFJ PAN with access to infrastructure

Location of the project is the major source of conflicts – in many countries it blocked investment



# 2. Key elements of the project (3)

- Scientific environment
- Location
- Funds
- Tender specification
- Construction
- Acceptance tests
- Commissioning

### Poland joined European Union on May 1, 2004

In 2007 -2013 60 billions € used for reconstruction of infrastructure in form of Structural Funds

1.3 billion € for infrastructure in science and technology

#### Three successful applications of IFJ PAN:

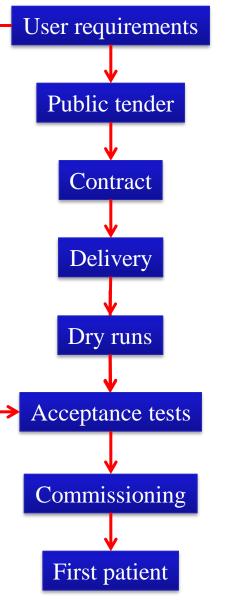
- 30 M€ (1st part)
- 20 M€ (2nd phase)
- 15 M€ (3rd phase)

### Cons:

complicated bureaucracy, unclear regulations, audits, audits, audits










# 2. Key elements of the project (4)



- Location
- Funds
- Tender specification
- Construction
- Acceptance tests
- Commissioning



### Challenges:

- Specification 4-5 years before starting the treatment
- Technology is changing fast
- Each new PT with somewhat different technology

### **Broad international consultations:**

- Hakan Nystrom (Uppsala), Jonathan Farr (Essen), Alexandro Mazal (Orsay), Stanislav Vatnicki (IAEA) **Great help!** 

### Key decisions:

- technology: PBS + classical cyclotron
- possibility for facility to grow

### Turn-key contract for system but...

- eye-treatment room own construction
- individual contracts for TPS, CT, dosimetry etc (major savings!)
- careful specification for acceptance tests



# 2. Key elements of the project (5)

- Scientific
   environment
- Location
- Funds
- Tender specification
- Construction
- Acceptance tests
- Commissioning

CE marking is a legal requirement for medical devices intended for medical operation in Europe:

•The Medical Devices Directive (MDD) (Council Directive 93/42/EEC, revised as 2007/47/EC

#### Eye treatment room designed, built and integrated by IFJ PAN

- major savings (about 2 M€ as compared to about 8 M€ )
- but getting the CE marking was a major undertaken: a few thousands of documents prepared

#### CE marking constitutes a major problem for self-developed facilities



## 3. Building team



# 3. Building team (1)

- Training by vendor
- Ph.D. degrees in physics
- Specialization of medical physics
- International Collaboration

- We required training that will end-up with the IBA certificates for the operators, technicians and IT people
- Operation and service is entirely in hands of CCB- IFJ technicians, engineers and I staff. IBA keeps one engineer at our site. It brings savings by the factor 3-4
- Our technicians, radiation therapists, physicist and clinicians went to running PT centers for hands-on training
- In every tender we requested substantial training for personnel





# 3. Building team (2)

- Training by vendor
- Ph.D. degrees in physics

-

- Specialization of medical physics
- International Collaboration

- A lot of young physicists came to perform research and do Ph.D. degree
  - Their competences helped enormously in acceptance tests, preparation of procedures, QA, dosimetry and treatment planning
- 2/3 of them continue as a highly qualified medical physicist
- In 8 years 12 Ph.D. degrees





# 3. Building team (3)

#### CENTRUM MEDYCZNE KSZTAŁCENIA PODYPLOMOWEGO

- Training by vendor
- Ph.D. degrees in physics
- Specialization of medical physics
- International Collaboration

In Poland medical physicist only with specialization can work with patients

Specialization takes 3 years (6000 hours!) and requires internships in different clinics

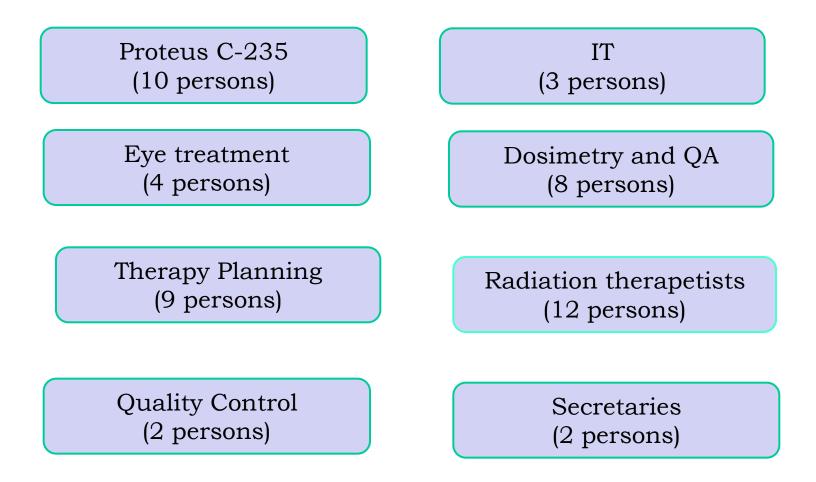
The program is approved by Ministry of Health

It ends with a examination (written + oral) in front of the Commission appointed by Ministry of Health

At CCB 7 medical physicists made specialization – which was a major undertaken



Program specjalizacji


w dziedzinie

#### FIZYKI MEDYCZNEJ

Program dla osób posiadających tytuł zawodowy magistra uzyskany na kierunku studiów w zakresie fizyki, fizyki medycznej, fizyki technicznej, biofizyki, inżynierii biomedycznej

20thri erohan

### 3. Building team – how many staff we need?



Total Staff: 50 persons + administration of IFJ + services of IFJ



4. Patient treatment and research



# 4. Patient treatment and research organization

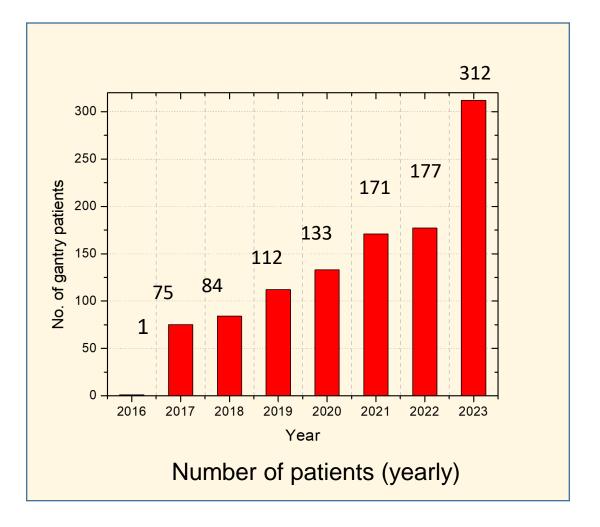
Morze Bałtyckie Bornholm Ustka, ROS.IA 1. CCB – IFJ PAN is not a medical Białystok, Bydgoszcz institution – it was founded from WARS74WA Badon the project supervised by Lubli Czestochow Ministry of Science REPUBLIKA CZESKA SLOWACJ 2. We have contracts with National Institute of Oncology and Adults, Children **Eves** University Hospitals – they rent the medical area. National Institute of Oncology University Hospital 5.5 km from IFJ PAN 7 km from IFJ PAN 3. Our staff is responsible for operation of facility, handling patients by radiation therapeutists, dosimetry, QA, partly for the treatment planning Proton therapy facility CCB- IFJ PAN



### **4. Patient treatment and research** indications financed by the National Health Funds in Poland (2016-2023)

|          | ICD-<br>10 | Tumors (anatomical localization & histology)     |                                                                                                                      | Patients          |
|----------|------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------|
|          | C41        | the base of the<br>skull, next to spinal<br>cord | chordoma, chondrosarcoma                                                                                             | adults & children |
| n<br>st? | C49        | periveral area                                   | soft tissue and bone sarcomas                                                                                        | children          |
| low      | C30        | paranasal sinuses                                | malignant melanoma, neuroblastoma,<br>adenocystic carcinoma, mucoepidermoid<br>carcinoma, undifferentiated carcinoma | children          |
|          | C31        | irradiaton of the cerebrospinal axis             | medulloblastoma, pineal germ cell tumor,<br>malignant ependymoma, choroid plexus<br>carcinoma                        | children          |
|          | C71        | Gliomas                                          | WHO G1, G2                                                                                                           | adults            |
|          |            | Hodgkin disease                                  |                                                                                                                      | adults            |

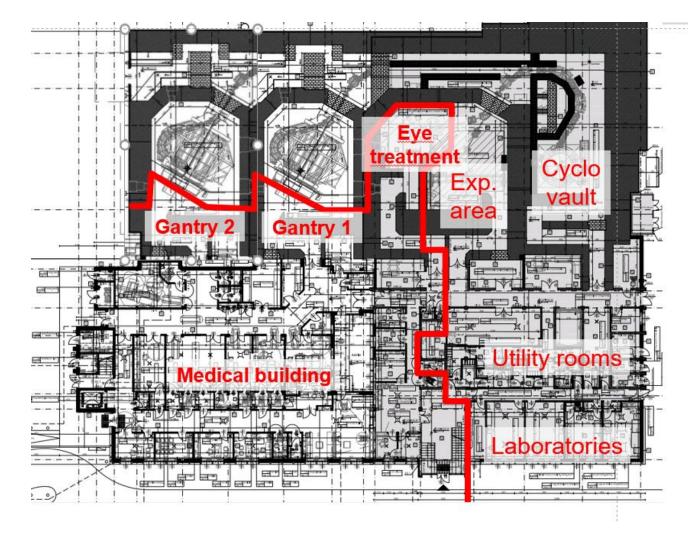
- rare tumors
- not all potential patients from Poland directed to CCB (trust? competition??
- reimbursement does not follow inflation
- private patients not allowed
- difficult financial situation


**\$** 

### 4. Patient treatment and research Patient statistics

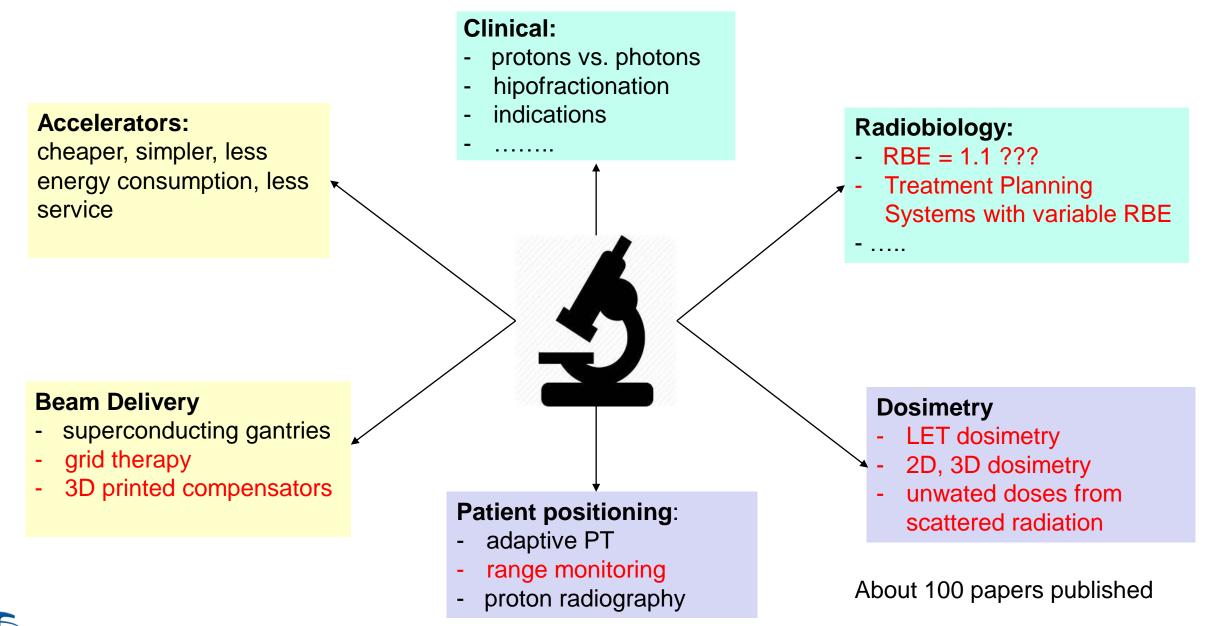
Proton eye melanoma (2011-2023): 363 patients (128 on previous AIC-144 cyclotron);

Gantry pencil scanning beam (2016 - 2023): 1108 pacjentów including 100 children


Until 08.2024 completed treatment more than 1550 patients






# 4. Patient treatment and research

- CCB was funded as a research user facility
- Medical and experimental area are separated
- The experimental area is used mainly by nuclear physics users
- The three medical lines (2 gantries + eye line) are used for medical physics, detector experiments and radiobiology
- There are two dedicated radiobiological laboratories and rooms for preparation of experiments in physics
- International Advisory Committee approves the plans of experiments
- ENSAR, INSPIRE EU funded TNA projects
- till 2024: 35 institutions from 16 countries,





### The main reaserch topics related to proton therapy – CCB IFJ PAN



## Lessons learned from the CCB project - summary

- 1. It is important that the project is located in a stable institution with sufficient resources, which could be used in case of problems/crises.
- 2. Experience of the institution in handling the big projects is essential
- 3. Presence of experts in operation of accelerators, in radiation physics, radiation protection, detectors, radiobiology very useful.
- 4. Collaboration with all partners around "win win" situation needed to select the centre location
- 5. Training at different levels- by research, by specialization, by collaboration, by internships in other centers
- 6. Leadership of a physician (radiation oncologist) with strong personality and position crucial for the success of the project . However, the most work will be done by the project leader (physicist)
- 7. Difficult task: selection of the technology the centre will start in 5-10 years.
- 8. "Do it yourself" or "buy" the big problem of the Medical CE certificate. Buy when only possible.
- 9. Work early on the financing of therapy indications, patient flow, in agreement with conventional therapy.
- 10. Involve physicians and physicists from many centers and help in their carriers (projects, internships, common patient data etc.)

