

High-frequency RFQ for societal and medical applications

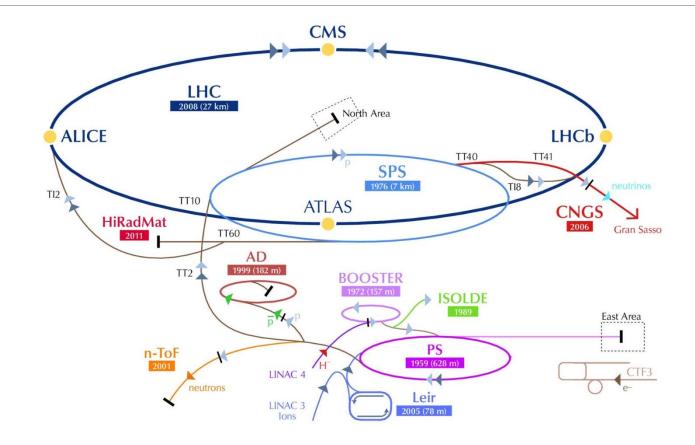
Alessandra M Lombardi (BE-ABP-HSL)

MED

Outline

Highlight of Linac 4 (2006-2020)

R&D on LINAC4 was applied in medical and societal projects


LIGHT: 750MHz RFQ for medical protons (2015-2017)

ELISA-MACHINA: 750 MHZ RFQ for societal use (2017-2022)

HELIUM and Fully stripped Carbon: 750 MHZ RFQ for carbon ion (about to be tested)

The big picture: LHC Luminosity

$$\mathbf{\mathcal{L}} = \frac{\gamma}{4\pi} \times f_r \times \frac{F}{\beta^*} \times n_b \times N_b \frac{N_b}{\mathcal{E}_n}$$

From optics at Interaction point

From machine design and limitations (e cloud)

Brightness from Injectors : defined at low energy

 $\begin{array}{ll} \textbf{N}_b & \text{number of particles per bunch} \\ \textbf{n}_b & \text{number of bunches} \\ \textbf{f}_r & \text{revolution frequency} \\ \textbf{\epsilon}_{\textbf{\eta}} & \text{normalised emittance} \\ \textbf{beta value at Ip} \\ \textbf{F} & \text{reduction factor due to crossing angle} \end{array}$

LHC INJECTOR CHAIN:

<u>Linac2 (50 MeV) 1978 length 40 m</u>

160mA , 100 μsec , 1 Hz

Max Space Charge Tune Shift reached

 \downarrow

<u>PS Booster (1.4 GeV)</u> 1972 – radius 25 m

4 rings stacked

Output energy already upgraded twice

 \downarrow

<u>PS (25 GeV)</u> 1959 – radius 100 m

 \downarrow

SPS (450 GeV) - 1976 radius 1100 m

PS/RF/Note 96-27 25 October 1996

PROPOSAL FOR A 2 GEV LINAC INJECTOR FOR THE CERN PS

R. Garoby, M. Vretenar

CERN-AB-2006-084 ABP/RF

Linac4 Technical Design Report

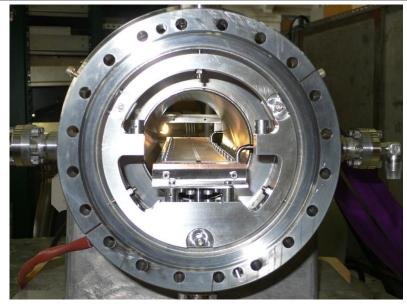
• At 13h00 first beam crossing LTB.BHZ40 and threading to the first BTV, BI.BT

Proposals (1996-2006)

Decision in 2007 R. Aymar director general Ground Breaking ceremony: 16
October 2008

Inauguration: 9
May 2017

Injection in PSB: 7 December 2020


In its June 2007 session the CERN
Council has approved the White
Paper "Scientific Activities and
Budget Estimates for 2007 and
Provisional Projections for the Years
2008-2010 and Perspectives for
Long-Term", which includes
construction of a 160 MeV H- linear
accelerator called LINAC4, and the
study of a 5GeV, high beam power,
superconducting proton Linac (SPL).

Innovations in LINAC4

3 MeV/ 352 MHz/ 3 m long RFQ Commissioned with beam 2013 Experience used for design of equivalent Radio Frequency Quadrupole for medical and societal applications

Fast chopper, validated 2013
Risetime<10nsec/ extinguish factor
100%

PMQ for tank2, 60 mm in diameter and 80 mm in length **Produced in European industry for the first time**

LIGHT pre-injector

2014

- S. Myers : head of office for medical applications
- Study efficient accelerator in the energy range few keV to 5 MeV for a LINAC-based hadron-therapy facility (3GHz)

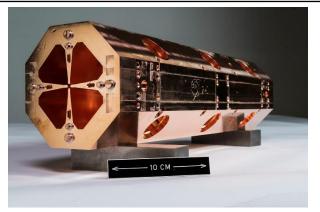
2015-16

- 2015 Construction and assembly at CERN
- 2016 installation at SA2 includes a commercial proton source

2017

- First beam in February
- Validation of the beam dynamics
- CERN was granted a patent

2017 - 2023


 Used by ADAM/AVO at CERN as a pre-injector for a hadron based facility (tests up to 70MeV)

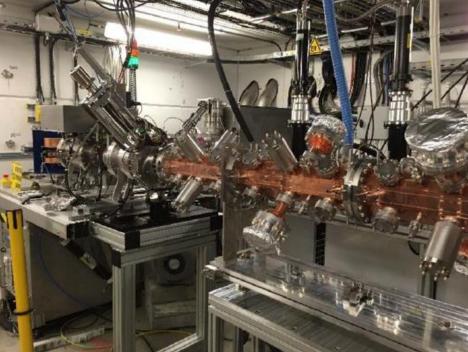
2015 - CONSTRUCTION

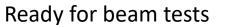
Source and RFQ parameters	
RF Frequency	750 MHz
Input	40 keV
Output Energy	5 MeV
Length	2m
Vane voltage	65kV
Peak RF power	400kW
Duty cycle / max	0.4% /(5%max)
Input/Output Pulse Current in 3GHz acceptance	100/30 μΑ
Transv. emittance 90%	0.1 pi mm mrad
Average aperture (r0)	2mm
Maximum modulation	3


March 15 -Machining (±10 μm)

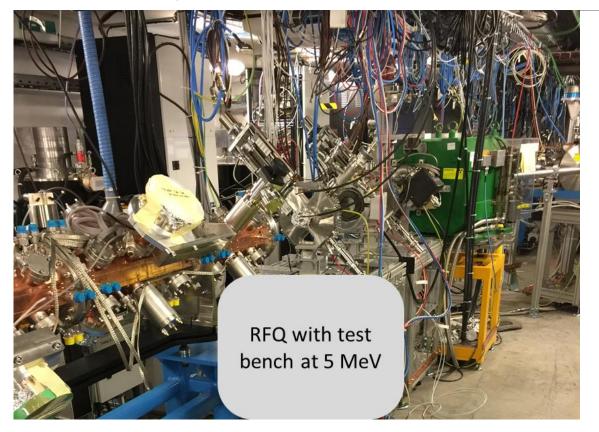
June 15 - First brazing

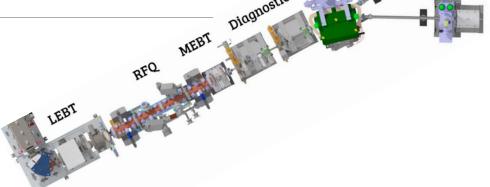
May 15- Assembling ($\pm 15~\mu m$)


October 15 – Second brazing



2016: assembly, tuning and high power RF





RF measurements

2017: proton beam at SA2

LOW ENERGY PRE-INJECTOR for ADAM/AVO test facility at SA2

Radically new design from the beam dynamics point of view-validated by beam measurements. It build on the experience of the LINAC4 RFQ for RF design and mechanical design.

Built in the CERN workshop: less than 2 years from start of construction to installation, this included RF tuning.

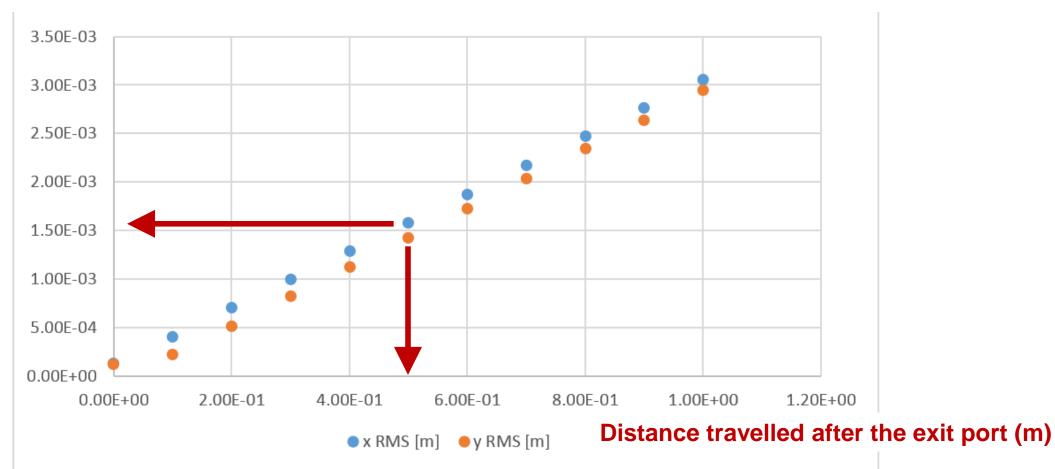
A copy is built in industry.

MACHINA

Source and RFQ parameters

Laboratorio di tecniche nucleari per l'Ambiente e i **Be**ni **C**ulturali INFN e Dipartimento di Fisica e Astronomia dell'Università di Firenze

RF Frequency 750 MHz Input 20 keV **Output Energy** 2 MeV Length 1m Vane voltage 35kV Peak RF power 100kW Duty cycle / max 0.4% /(5%max) Input/Output Pulse Current 100/30 μΑ in 3GHz acceptance Transv. emittance 90% 0.1 pi mm mrad Average aperture (r0) 1.4 mm Maximum modulation 2.8


Light from the Bragg peak at 2 MeV (measured at CERN).

The 2 MeV proton beam downstream of the RFQ exit port

From simulations:

75 cm beamline after the RFQ + 2 PMQ 40 T/m

- \Rightarrow Beam spot size on sample \sim 400 μ m
- 40 cm beamline after the RFQ + 2 PMQ 80 T/m
- ⇒ Beam spot size on sample ~ 400µm

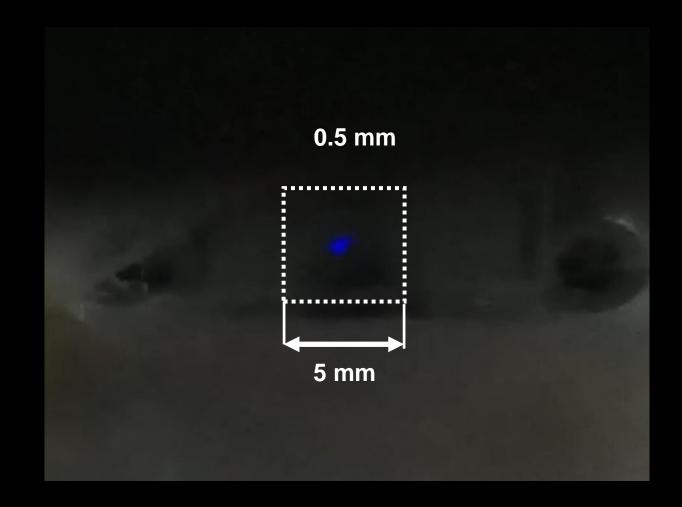
Where can we go?

with 2 PMQ 80 T/m, we could have a

- \Rightarrow beam spot size on sample of \sim 35 μ m
- with 2 PMQ 90 T/m, we could have a
- \Rightarrow beam spot size on sample of ~20 μ m

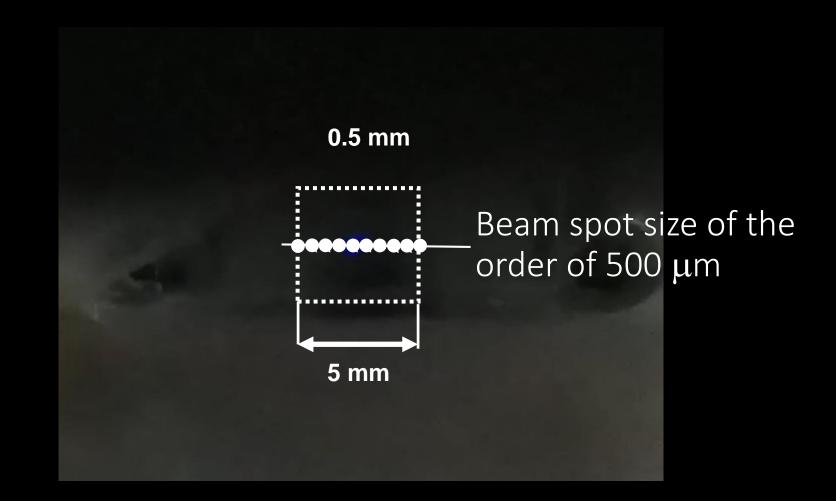
BEAM

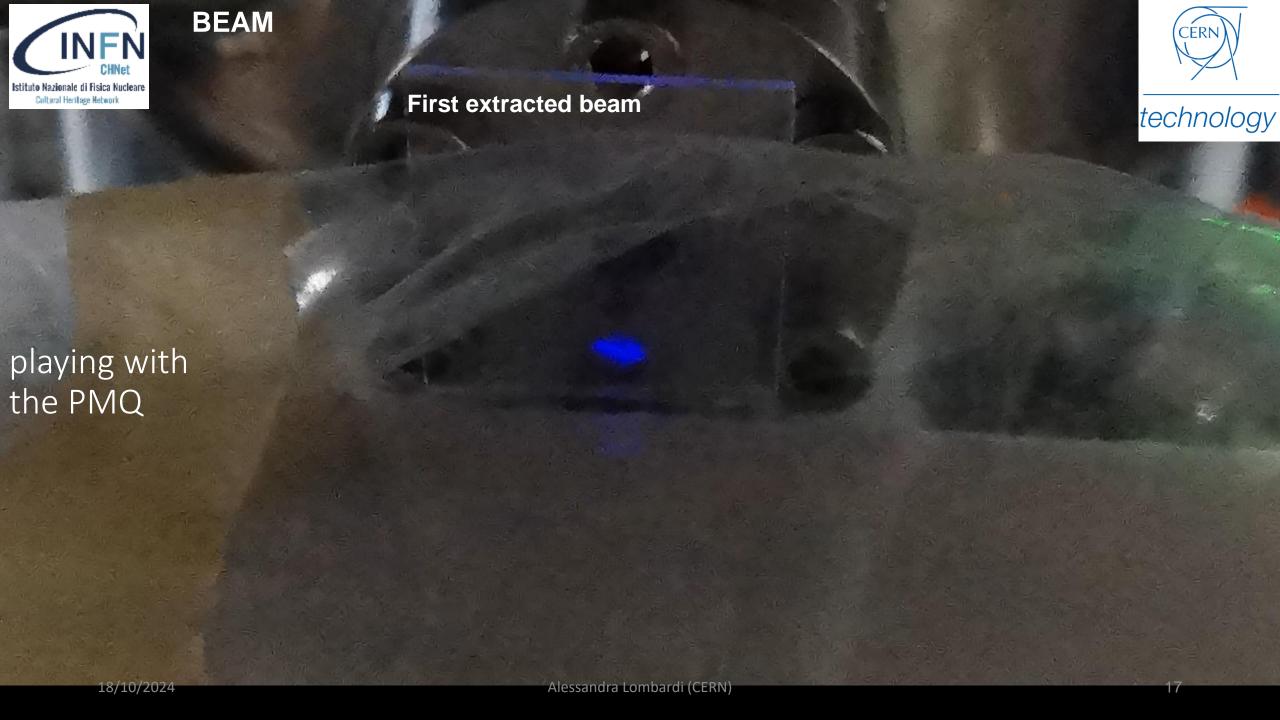
First extracted beam



First extracted beam

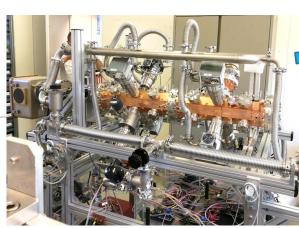
PMQ roughly optimised





First extracted beam

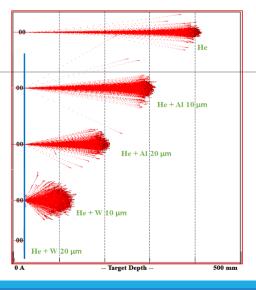
PMQ roughly optimised

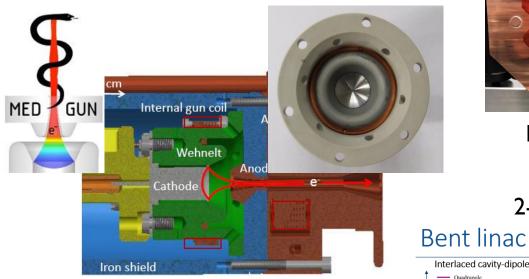


ELISA

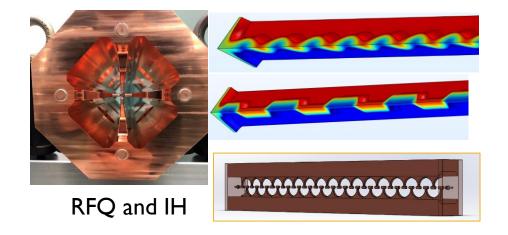
Experimental Linac for Surface Analysis

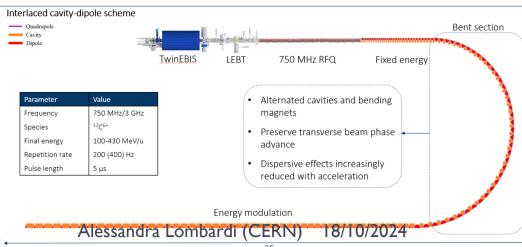
A miniature proton accelerator for Science Gateway





NEXT challenge: accelerate Carbon in a LINAC

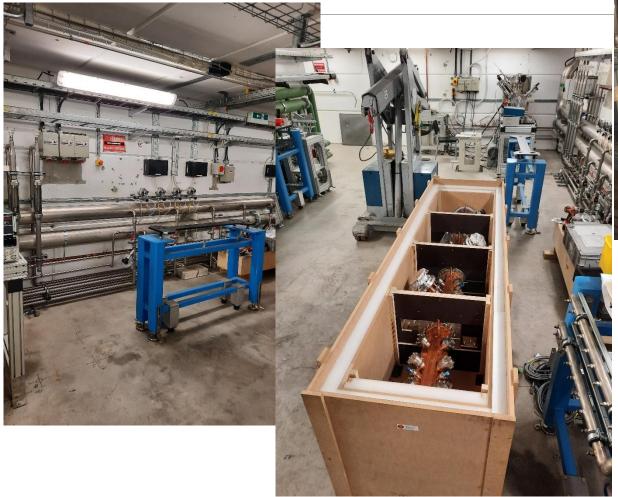

I- Source of fully stripped carbon ion with sufficient quality for use in a medical facility


MEDeGUN mechanical design

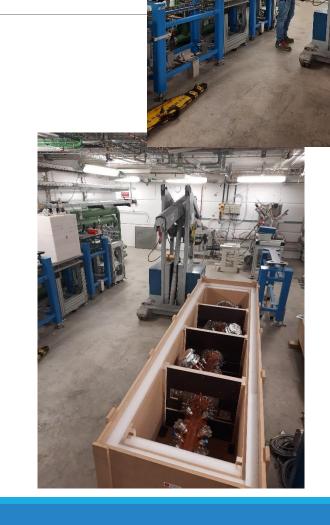
3- LINAC with a "hospital-friendly" footprint, adaptable to existing buildings and allowing intermediate station for e.g. Radioisotope production

Ciemat

2- An efficient and easy to use pre-injector



Collaboration CERN-CIEMAT-CDTI-Spanish Industry — RadioFrequencyQuadrupole



4-First (of 4) section completed

Hot from test stand

Future plans

We have

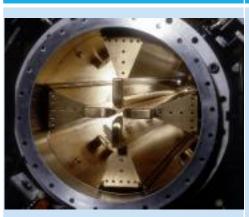
- A proton source designed to inject DIRECTLY into the RFQ see Aris Mamaras contribution in a moment
- A helium source + a Low Energy Beam Transport designed to match a helium beam to the RFQ acceptance Amer Ajanovic contribution
- A 750 MHz RFQ designed to accelerate from 15keV/ to 2.5 MeV/u particles with q/m =1/2

We will then

Characterize the proton and helium sources for use with the RFQ and accelerate the beam through the Carbon RFQ

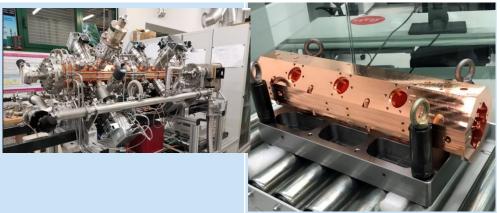
Validate (hopefully) the 750 MHz RFQ design and proceed to the construction of the second RFQ to bring the beam to 5MeV/u

Milestones in the development of RFQ at CERN.


1990
RFQ2
200 MHz
0.5 MeV /m
Power/m 244kW/m
P/MeV 670kW/MeV
Weight :1200kg/m
Ext. diametre : ~45 cm
200mA proton

2007
LINAC4 RFQ
352 MHz
1MeV/m
Power/m 133 kW/m
P/MeV 135kW/MeV
Weight: 400kg/m
Ext. diametre: 29 cm
40 mA H-

2014
HF RFQ
750MHz
2.5MeV/m
Power/m 200kW/m
P/MeV 80 kW/MeV
Weight: 100 kg/m
Ext. diametre: 13 cm
0.1 mA proton
COMPACT


MACHINA / ELISA
750MHz
2.0MeV/m
Power/ m 80kW/m
P/MeV 40kW/MeV
Weight: 100 kg/m
Ext. diametre: 13 cm
0.1 mA proton
Portable

Name_to_be_found
750MHz
1.0MeV/m (q/m=1/2)
Power/ m 100kW/m
P/MeV 80 kW/MeV
Weight: 100 kg/m
Ext. diametre: 13 cm
0.1 mA carbon ions
industrialised

ALESSANDRA LOMBARDI (CERN)

18/10/2024