

Optimisation for pre-injectors for hadron therapy

Aristeidis Mamaras

18/10/2024

Hadron Therapy Workshop: status and perspectives, plans for next generation facilities

Outlook

- Definition of a pre-injector
- Pre-injectors in medical facilities
- CERN Linac 4
- Medical applications within ABP-HSL
- Study outline
- AM01:
 - Design
 - Beam optics
- Next steps

Role:

- Ions are generated in the pre-injector's ion source(s)
- The pre-injector ensures the ion beam has the correct energy, intensity, and stability for efficient downstream acceleration
- A precise ion beam in hadron therapy minimizes damage to surrounding healthy tissues
- Pre-injector optimization enhances collimation, reduces energy spread, and improves energy deposition at the *Bragg peak*, minimizing early-stage beam losses
- Reducing energy losses and improving system efficiency significantly reduce operational costs in hadron therapy facilities

Pre-injectors in medical facilities

HIT*

- Linac cavity size is inversely proportional to frequency; higher frequencies mean smaller cavities
- Typical operating frequency is 217 MHz; the aim is to shift to higher frequencies e.g., 750 MHz
- Smaller cavities reduce the pre-injector's footprint; essential in space-limited clinical settings
- Pre-injectors must adhere to strict safety and reliability standards, ensuring high uptime and minimal maintenance

****https://cds.cern.ch/record/2003190/files/thpme001.pdf

MedAustron

CERN Linac 4

- Linac4: 1st stage of the LHC injection chain
- Replacement for Linac2 during the 2019 2020 shutdown
- It became the source of proton beams for the LHC in 2020
- Negative hydrogen ions H^- (hydrogen atoms with an additional electron) accelerated to 160 MeV

https://home.cern/science/accelerators/linear-accelerator-4

CERN

The CERN accelerator complex Complexe des accélérateurs du CERN

Medical Applications within ABP-HSL

- LINAC-based hadron-therapy facility:
 - compact 750 MHz RFO design based on Linac 4 expertise
 - use: injector to bunch, focus and accelerate the beam up to 5 MeV within 2 m
 - peak RF power: 400 kW

Copy for medical facility:

- Built in Italian industry
- First beam July 2021

Redesigned for portability:

- MACHINA (Florence)
- IBA, PIXE, PIGE, XRF..

Redesigned for ¹²C⁶⁺:

- Built in Spanish industry
- · Collaboration agreement with CIEMAT 2022

Low Current (e.g., 100 μ A) \rightarrow Injector needs (conventional part. treatment..)

High Current (e.g., 10 mA) → FLASH, BNCT, Radioisotope Production..

Redesigned for portability:

- ELISA
- Science Gateway 2023

Bent linac

- **Carbon Linac for Medical Applications**
- A/q = 2 (Protons, Helium and stripped Carbon ions)
- Pencil beam treatment

Novel source extraction system:

Outline

Design of a novel/compact source extraction system for reaching high currents

Scope

High current availability will increase the patient treatment capacity as well as the produced radioisotope yield

Non availability of a dedicated high-current source for experimental testing rather than L4's IS04 in proton mode

AM01 Design

... "Miniaturizing pre-injector linacs"

Options:

- RFQ ≥ 352 MHz with an $E_{out} ≥ 3$ MeV/u combined with a DTLtype structure (A/q ≥ 2) to increase E_{out} for a wide range of radioisotope production (theragnostics, conventional isotopes)
- Equipotential lines closer to circular shape near the source electrode \rightarrow Emittance shape
- Rounded corners, no flat surfaces in short electrode distances
- **Region of interest** (*beam axis*) for the simulations
- E-field with safety factor ~1.6
- Max. E-field @ Surface: 9.5 kV/mm (Current IS04 Extr. System 9.1 kV/mm, no sparking observed)

AM01 Beam Optics

□ Computed using Travel:

• for p, $E_{out} = 45 \text{ keV}$, I = 40 mA

□ Plasma source conditions same as IS04

□ Finalize the AM01 3D design and proceed to manufacturing

□ Preparations for experimental testing:

- Stabilize source gas
- Ensure vacuum conditions
- Conduct voltage conditioning

Conduct experimental testing in proton mode on the Linac4 test stand

• Implement beam diagnostics to measure the beam properties post-extraction

Thank you!

Backup Slides

Input Beam Specifications		
Particle Type	H⁺	
X, Y / mm	± 4	
X', Y' / mrad	± 800	
Kin. E / eV	10	
$\frac{\Delta E}{E}$ / %	0.1	
I/mA	40	

L4 RFQ Matching Criteria			
Alpha _{x,y}	0.88		
Beta _{x,y} (Twiss) / m/rad	0.02		
RMS Emittance, Norm. / mm.mrad	0.35		
Design Current / mA	40		
Energy / keV	45		

Output Beam Specifications		
Particle Type	H⁺	
X, Y / mm	± 1.9	
X', Y' / mrad	± 134	
Kin. E / eV	45 × 10 ³	
RMS Beam Size / mm	1.12	
RMS Emittance, Norm. / mm.mrad	0.38	
Alpha	0.73	
Beta (Twiss) / m/rad	0.033	
Transmission @ RFQ MP/ %	100	

- Large Ellipse = RFQ Acceptance
- Red ellipse contains 93.68% of the beam $(5 * \varepsilon_{RMS, norm})$

