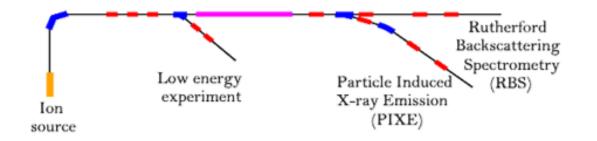
Sarajevo Ion Accelerator project as a seed to build capacity for next generation Accelerator Physicists in Bosnia and Herzegovina via partnership with CERN

> Amer Ajanovic UNSA (Sarajevo, BiH) + CERN (Geneva, Swi) 18/10/2024, Thessaloniki, Greece

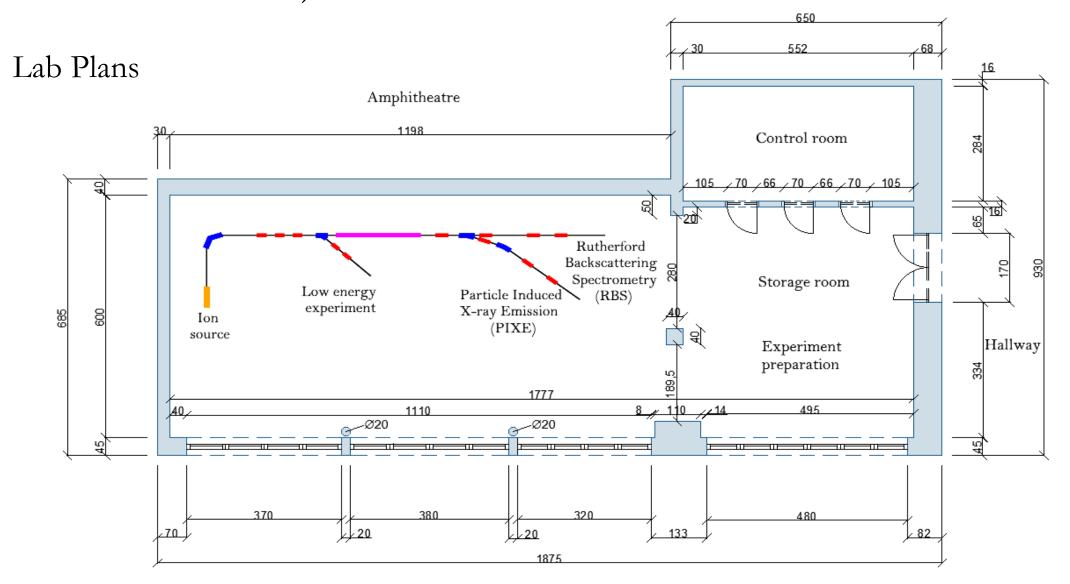
SARAI: Sarajevo Ion Accelerator

Partnership: UNSA-CERN-JSI-GSI-COSYLAB-PANTECHNIK

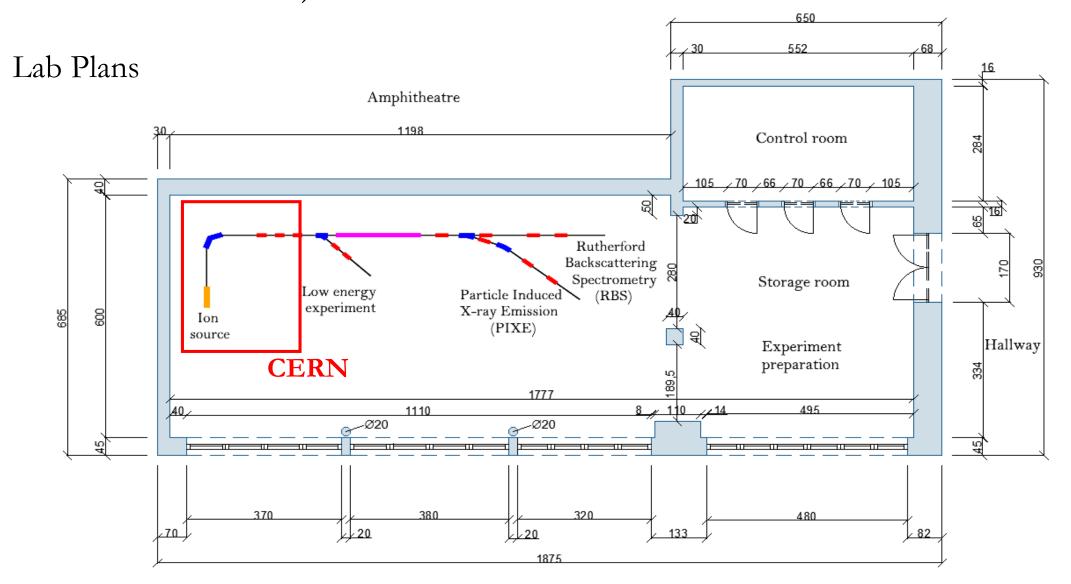

Supported by: The Three Physicists Foundation + Ministry of Science and Education BiH

Journey so far: 2024

Jan-Mar: JUAS 1+2

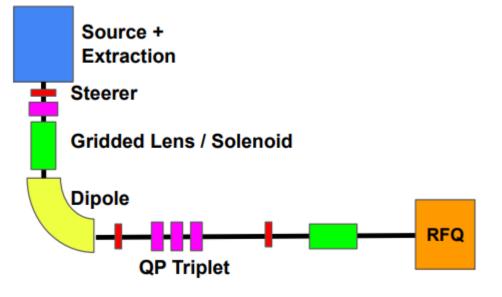

Apr: Sarajevo Lab Shielding Prerequisites

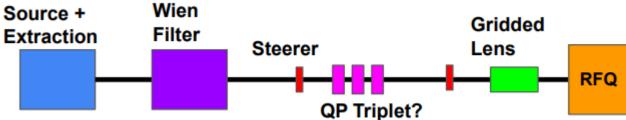
May-Jul: COSYLAB



Aug: CERN

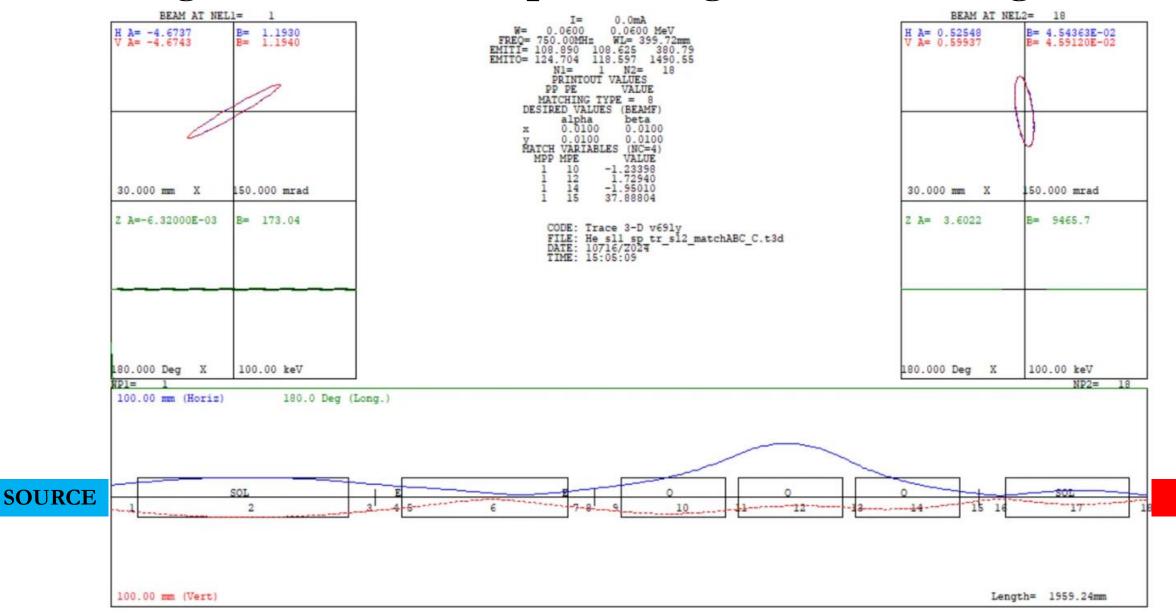
SARAI: Sarajevo Ion Accelerator


SARAI: Sarajevo Ion Accelerator



Pantechnik Source: He2+ with LEBT

1. SPECTROMETER: BENDING DIPOLE



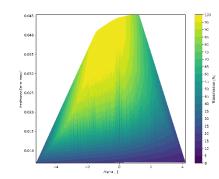
2. WIEN FILTER

Matching to the RFQ: Optimizing LEBT Configuration

RFO

Example UNSA Student Projects at CERN: Summer 2024

Danis Bradarić


Beam Dynamics Simulations of a Low-Energy Extraction System for LINAC4

Danis Bradarić

Thessaloniki, Greece

18.10.2024.

Naida Ustavdić

Experimental Ion Spectroscopy on LINAC3's Electron Cyclotron Resonance Source

> Naida Ustavdić Student at PMF UNSA

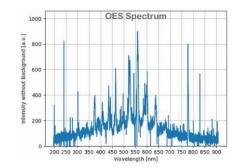
Thessaloniki, Greece

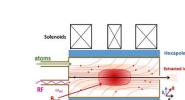
18/10/2024

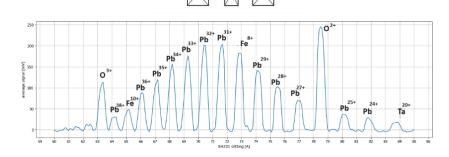
Dr. Al Tawil

Medina Dugonjić

Automated Post-Analysis Data Transfer Implementation for LINAC3 ECR Source


> Medina Dugonjić Supervisor: Bichu Bhaskar


Faculty of Natural Sciences and Mathematics University of Sarajevo, CERN Sponsored by: Dr. Al Tawil Clinic, Sarajevo


October 16, 2024

 $\overline{\mathbb{Q}}$

Beam Dynamics Simulations of a Low-Energy Extraction System for LINAC4

Danis Bradarić

Thessaloniki, Greece

Introduction

The goal?

- The AM01 extraction system integrates beam extraction, acceleration, and matching to the LINAC4 RFQ matching plane into a single design
- As it is not possible to accurately simulate the beam extracted from the source, a range of different beam distributions was generated and passed through the AM01 extraction system
- This approach allowed for stress testing the system, and the results can serve as a reference point for comparison with future experimental outcomes

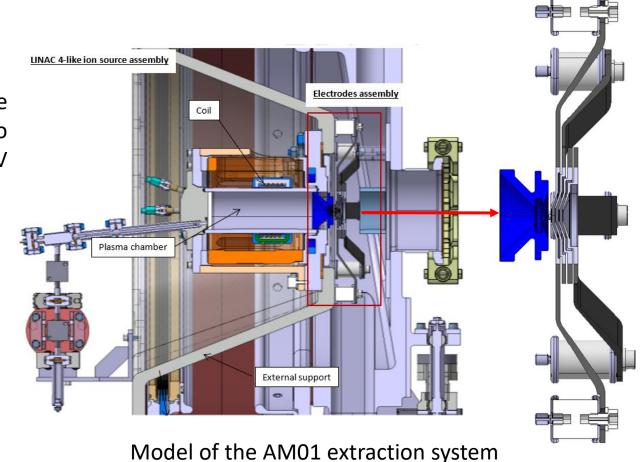
Tools and software

Travel

• For numerical simulations of the beam dynamics Travel was used, which is a multi-particle tracking code, developed at CERN, for the beam dynamics calculations of the linear accelerators

PyTravel

- Set of functions wrote in Python that can be used as a tool when working with Travel simulations
- The results and plots shown in this presentation were obtained using PyTravel



The AM01 extraction system

Design

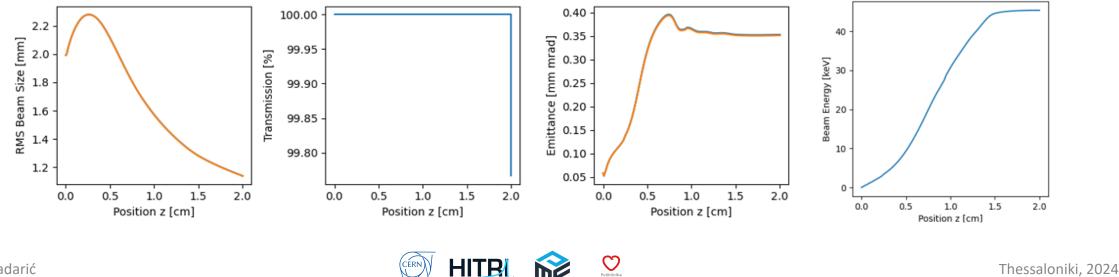
- The system consists of 5 electrodes including the source electrode with cylindrical symmetry able to withstand and exploit high voltages to reach a 45 keV beam acceleration
- System's length: 2 cm (axially)
- Beam current: 40 mA (for protons)
- Voltage configuration: 45, 20, 12, 6, 0 kV

More information about the system presented by Aristeidis Mamaras

AM01 Beam Dynamics: Rationale

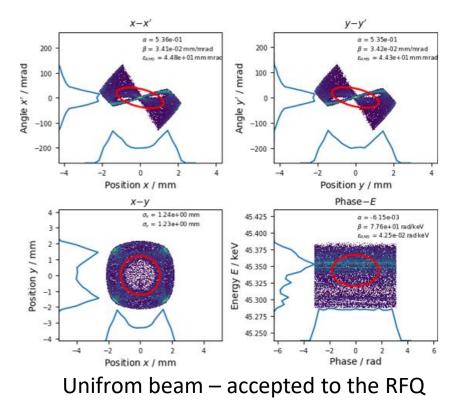
Beamline

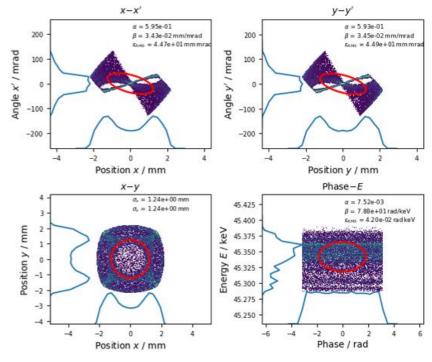
- The focus was on simulating the source extraction conditions
- Transmission of the beam through the system was analyzed in respect to different parameters



Kerning Kernin

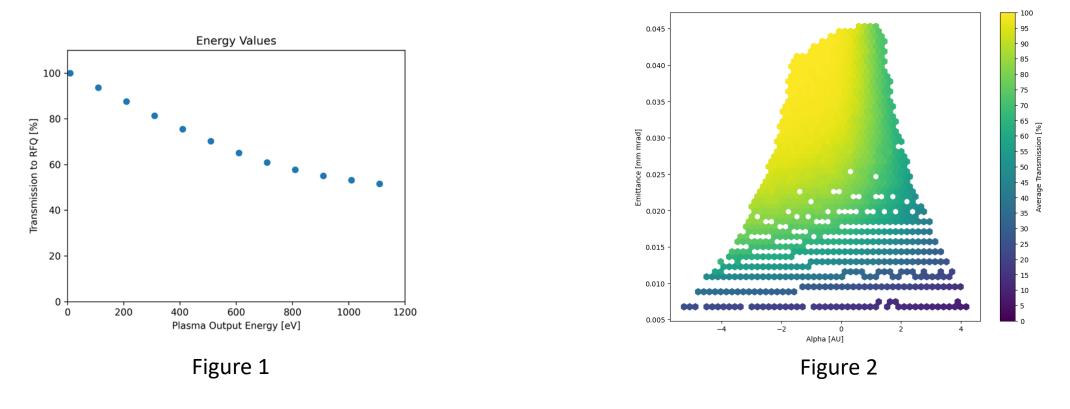
AM01 Beam Dynamics: Results


Characteristics of the system:


- The system demonstrated effective focusing capabilities for a wide range of beam distributions
- No particle loss is observed within the system for the current configuration, as shown in the *"Transmission-position z"* plot below. In other configurations, possible beam losses are primarily due to mismatches with the RFQ acceptance plane.
- Energy gain was as expected 45keV

Beam Comparison

• When comparing beams with a Gaussian and Uniform distributions that have similar RMS normalized emittance values, the Uniform beam distributions generally achieve higher transmission rates in most instances



Gaussian beam – accepted to the RFQ

Optimal beam parameters

- Higher transmission values observed for lower energies of the initial plasma output beam Figure 1
- Simulations done with a range of Emittance and alpha(Courant-Snyder) parameter values to see if there is an optimal set of parameters for the configuration Figure 2

HIIB

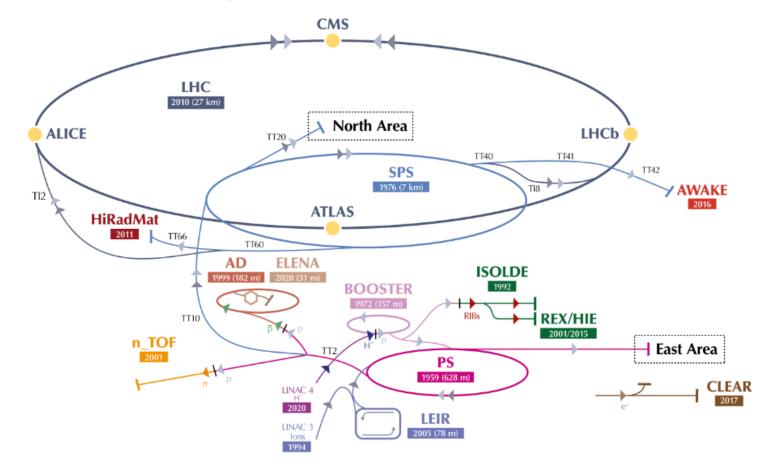
Conclusion

- The system effectively focuses the beam while accelerating it to the desired energies. It maintains high transmission of the beam to the RFQ (Radio Frequency Quadrupole)
- Uniformly distributed beams achieve higher transmission values in respect to beams with a Gaussian distribution
- Higher transmission is achieved with lower input energy distributions. An approach more compatible with the beam energy extracted from the source during the early stages
- Further investigation into beam current studies and various voltage configurations is essential to understand the system's behaviour and limitations, as well as to analyze the effects on beam evolution

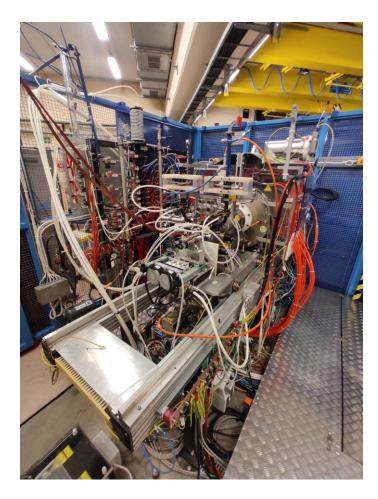
Thank you for your attention!

Experimental Ion Spectroscopy on LINAC3's Electron Cyclotron Resonance Source

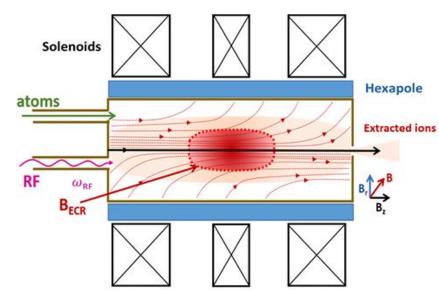
Naida Ustavdić


Student at PMF UNSA

Thessaloniki, Greece



LINAC 3 in CERN accelerator complex


The CERN accelerator complex Complexe des accélérateurs du CERN

Working principle of ECR ion source

Figure: GTS-LHC ECR ion source **Picture taken by:** Medina Dugonjić

Plasma is ignited once we reach resonance meaning: $\omega_{RF} = \omega_e$. where

 $\omega_e = \frac{e \cdot B}{m}$ - frequency of electron in a magnetic field ω_{RF} - is frequency of microwaves

produced by RF generator

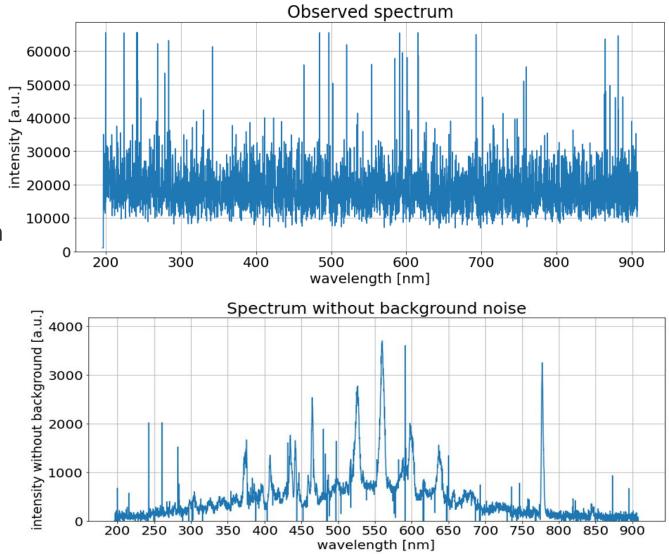
Figure: schematics of ECR ion

source

Source: LINAC3 Source Mg test results-Bichu Bhaskar (ABP Group Information Meeting)

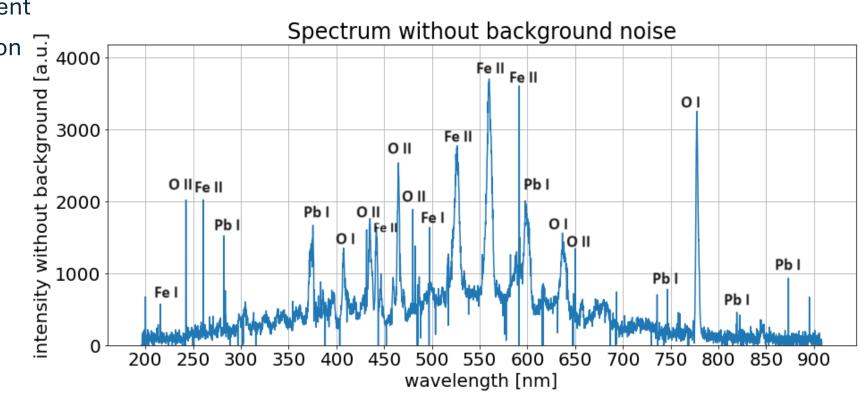
Working principle of ECR ion source

Figure: schematics of ECR ion


source

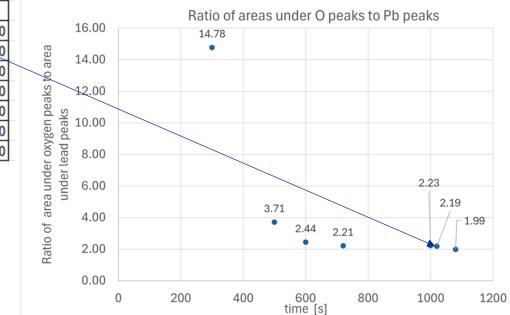
Source: LINAC3 Source Mg test results-Bichu Bhaskar (ABP Group Information Meeting)

- The beam passes through the dipole magnet, where ions are separated based on charge to mass ratio.
- Optical emission spectra is obtained using spectrometer.
- Charge State Distribution is recorded using Faraday cup, placed downstream from the dipole magnets.


Spectroscopyobtaining spectra

- Noninvasive diagnostic method
- Experimentally obtaining optical emission spectra (OES)
- Analyse the results using python (or any other coding tool)
- Note: different scales

Spectroscopy-identifying elements


- Identification of elements was done using NIST database: <u>https://physics.nist.gov/PhysRefData/ASD/lines_form.html</u>
- Analysis of the spectrum performed by calculating area under every peak, and calculating ratios of area under each element
- All analysis done in Python
- PS:
- $0 I \rightarrow neutral 0$
- $0 II \rightarrow 0^{1+}ion...$

Spectroscopy – changing parameters for getting optimal results

Parameters	ratio of areas under O to areas under Pb	time [s]	
spectra average: 15 integration time 60s	2.19	1020	
spectra average: 20 integration time 50s	2.23	1000	
spectra average: 60 integration time 10s	2.21	720	
spectra average: 50 integration time 20s	1.99	1080	
spectra average: 30 integration time 10s	14.78	300	
spectra average: 50 integration time 10s	3.71	500	
spectra average: 10 integration time 60s	2.44	600	

- Performed series of measurements changing integration time and spectra average
- Calculating ratios of area under each peak
- Finding optimal conditions to detect lead
- In this case optimal conditions are: integration time 60s and spectra averaged 15.

Charge state distribution (CSD)

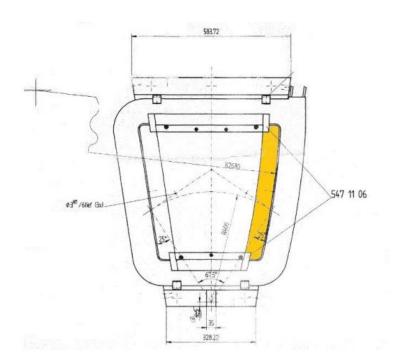
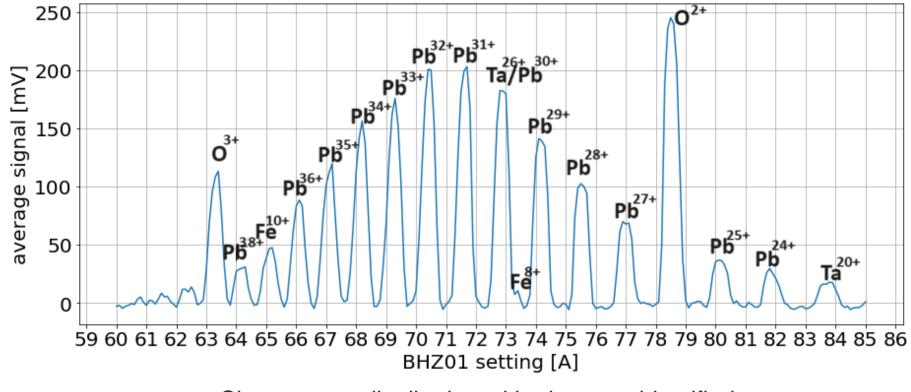
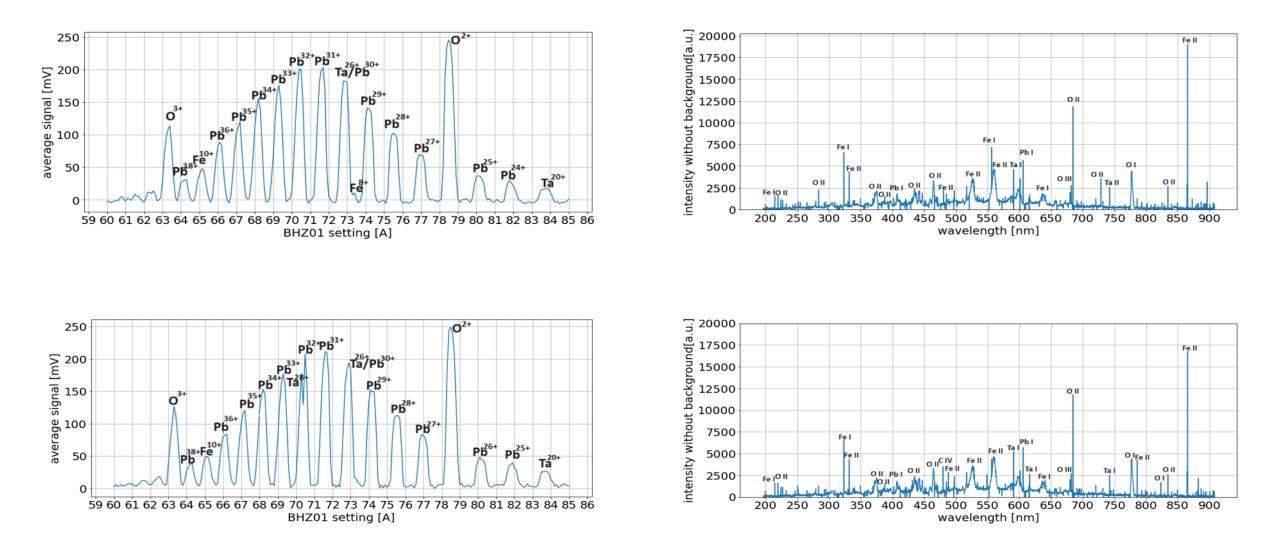



Figure: ITL_BHZ dipole magnet Source: EDMS: 1727229


- lons are separated based on difference in magnetic rigidity
- Magnetic rigidity is given by formula: $B\rho = \sqrt{\frac{2mV_{ext}}{q}}$ where V_{ext} - extraction voltage, ρ -radius curvature of the ion path due to magnetic field
- At the time I was obtaining $CSD : V_{ext} = 19 \text{kV}$
- ITL_BHZ Dipole magnet parameters: bending angle of 67.5° and ρ = 400mm
- On Monday 29/7/2024 2 CSD scans were obtained. The source parameters were not changed in between 2 scans. Due to problems with source during my stay no more scans were obtained.

Charge state distribution

Charge state distribution with elements identified

Finding correlation

Thank you for your attention!

Automated Post-Analysis Data Transfer Implementation for LINAC3 ECR Source

Medina Dugonjić Supervisor: Bichu Bhaskar

Faculty of Natural Sciences and Mathematics University of Sarajevo, CERN **Sponsored by:** Dr. Al Tawil Clinic, Sarajevo

October 16, 2024

1/11

Motivation

- Objectives of the Project
- 3 Make a program that will process the data
- Transfer the processed data

2/11

- Idea: Convert already existing code in MATLAB to Python for analysing optical spectrums and integrate it with the CERN server via NXCALS/Timber
- *Why?* To be able to **track the data in real time**
- Real time tracking of OES analysis helps in source tuning and understanding plasma dynamics
- The only diagnostics for studying ECR plasma of GTS-LHC

Figure: Intended workflow

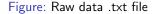
æ

October 16, 2024

< □ > < □ > < □ > < □ > < □ >

4711

Raw Data


File Edit View

SpectraSuite Data File Date: Mon Jul 08 10:30:21 CEST 2024 User: linac2 Dark Spectrum Present: No Reference Spectrum Present: No. Number of Sampled Component Spectra: 1 Spectrometers: USB4F09588 Integration Time (usec): 10000000 (USB4F09588) Spectra Averaged: 60 (USB4F09588) Boxcar Smoothing: 0 (USB4F09588) Correct for Electrical Dark: No (USB4F09588) Strobe/Lamp Enabled: No (USB4F09588) Correct for Detector Non-linearity: No (USB4F09588) Correct for Stray Light: No (USB4F09588) Number of Pixels in Processed Spectrum: 3648 >>>>Begin Processed Spectral Data<<<<< 195.68 1066.96 195.91 1066.96 196.13 1066.96 196.35 1047.80 196.57 1054.10 196.79 7392.64 197.02 5325.80 197.24 5254.45 197.46 4930.45 197.68 4016.70 197,90 5643,80 198.13 3897.47 198.35 3783.69 198.57 5576.50 198.79 6307.99 199.01 6451.96 199.24 3559.27 199.46 4406.96 199.68 19529.78 199.90 4127.90 200.12 4488.07

200.34 6901.43 200.57 4819.87 Ln 1, Col 1 55,387 characters

100% Windows (CRLF) UTF-8

< □ > < □ > < □ > < □ > < □ >

5/11

Make a program that will process the data

Code language:

Python

Purpose of the code:

- Access the data
- Iterate through all files
- Extract timestamps
- Substract background and find peaks
- Find area of the peak for lead (Pb) at 600.2 nm¹
- Make a .txt file that stores file names, timestamps, wavelengths of peaks and area of peaks
- Loop through the folder every 15 min and look for new files
- Report if new files are found and append the processed results in the already existing .txt file

¹This wavelength was the most common one; courtesy of Naida Ustavdić

Make a program that will process the data

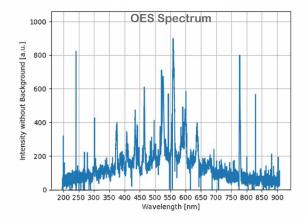


Figure: Peaks visualized

October 16, 2024

/ 11

Make a program that will process the data

File Edit View

	nesta						Peak Wavelength	(nm)	Area Under	Peak
background0000.txt			d Aug 07				600.20		53047.7959	
background0001.txt			1 Aug 07				600.20		51374.0838	
background0002.txt			1 Aug 07				600.20		50454.2872	
background0003.txt		Wea	d Aug 07	12:36:	03 CES	T 2024	600.20		50624.4292	
background0004.txt			1 Aug 07				600.20		50071.4672	
background0005.txt			d Aug 07				600.20		50086.4294	
background0006.txt		Wea	1 Aug 07	13:21:	03 CES	T 2024	600.20		50094.5967	
background0007.txt			1 Aug 07				600.20		49138.4418	
background0008.txt		Wea	d Aug 07	13:51:	03 CES	T 2024	600.20		49259.6615	
background0009.txt		Weo	1 Aug 07	14:06:	03 CES	T 2024	600.20		50057.7781	
background0010.txt		Wea	Aug 07	14:21:	03 CES	T 2024	600.20		50132.5880	
Data0000.txt We	d Aug	07	14:36:03	CEST	2024	600.20		49971.	5282	
Data0001.txt We	d Aug	07	14:51:03	CEST	2024	600.20		50360.0	6936	
Data0002.txt We	d Aug	07	15:06:02	CEST	2024	600.20		58445.4	0397	
Data0003.txt We	d Aug	07	15:21:02	CEST	2824	600.20		58494.4	6613	
Data0004.txt We	d Aug	07	15:36:02	CEST	2024	600.20		49740.5	9168	
Data0005.txt We	d Aug	07	15:51:02	CEST	2024	600.20		50255.4	4573	
Data0006.txt We	d Aug	07	16:06:02	CEST	2824	600.20		50555.0	8750	
Data0007.txt We	d Aug	07	16:21:02	CEST	2024	600.20		50426.0	6210	
Data0008.txt We	d Aug	07	16:36:02	CEST	2024	600.20		50144.	7186	
Data0009.txt We	d Aue	07	16:51:02	CEST	2024	600.20		49679.3	1560	
Data0010.txt We	d Aug	07	17:06:02	CEST	2024	600.20		48791.4	8432	
Data0011.txt We	d Aug	07	17:21:02	CEST	2824	600.20		49000.3	1763	
Data0012.txt We	d Aug	07	17:36:01	CEST	2024	600.20		49908.0	6759	
Data0013.txt We	d Aug	07	17:51:01	CEST	2024	600.20		50525.	3036	
Data0014.txt We	d Aug	07	18:06:01	CEST	2824	600.20		50294.4	8472	
Data0015.txt We	d Aug	07	18:21:01	CEST	2024	600.20		50286.	7684	
Data0016.txt We	d Aug	07	18:36:01	CEST	2024	600.20		50216.0	8698	
Data0017.txt We	d Aue	07	18:51:01	CEST	2024	600.20		50196.3	2085	
Data0018.txt We	d Aug	07	19:06:01	CEST	2024	600.20		49359.3	1495	
			19:21:01			600.20		49489.	3161	
			19:36:01			600.20		49806.		
			19:51:01			600.20		49327.		
Data0022.txt We	d Aug	07	20:06:01	CEST	2824	600.20		50013.3	3427	
			20:21:00			600.20		50017.		
			20:36:00			600.20		50187.		
			20:51:00			600.20		49656.		
			21:06:00			600.20		50124.0		
			21:21:00			600.20		49455.		
1 - 4 Col 57 - 37 431 ebs										

Ln 4, Col 57 37,421 characters

100% Windows (CRLF) UT

Figure: Look of the output file

∃⊳

3/11

The second part of the project consisted of identifying all techincal aspects of data transfer.

9/11

∃ >

The goal of the project was to make a program that will process the obtained data and integrate it with the CERN server via NXCALS/Timber.

Figure: Conclusion

10/11

(日) (四) (日) (日) (日)

Thank you for your attention.

문 문 문