

ΕΛΛΗΝΙΚΗ ΝΕΥΡΟΧΕΙΡΟΥΡΓΙΚΗ ΕΤΑΙΡΙΑ

HELLENIC NEUROSURGICAL SOCIETY

Pediatric Brain Tumor Surgery: where do we stand

Nicolas Foroglou Professor of Neurosurgery Chair Department of Neurosurgery

- Rich vasculature with BBB
- Interconnections
- Low mechanical resistance
- Autoregulation systems
- Neuroplasticity Gray and White matter maturation

Pediatric Brain Tumor

Incidence of pediatric CNS tumors Mortality and morbidity

Neuroradiological modalities

Surgery serves 3 pillars

Biopsy

Pathology and molecular markers Chemotherapy and immunotherapy Radiotherapy

Central Nervous System Tumours

Access by the VEHIC Class Institut of Tomours Reported Real

- Pediatric low-grade gliomas and glioneuronal tumors
- Pediatric-type diffuse high grade gliomas
- Ependymal tumors
- Embryonal tumors
- Mesenchymal tumors

	Subgroup	W			SHH				G3			G4		
Clinico- pathological aspects	Subtype	α	β	α	β	γ	δ	α	β	γ	α	β	γ	
	Frequency	10-15%		28-30%				25-28%			40-45%			
	Anatomic location	Cerebellopontine angle/Cerebellar peduncle		Cerebellar hemisphere				Midline (filling fourth ventricle)			Midline (filling fourth ventricle)			
	Histology	Mostly classic, rarely LCA		Mostly ND, classic and LCA (less frequent)				Classic (most common), LCA			Classic and LCA (less frequent)			
	Age	6-12	>17	3-17	0-3	0-3	>17	0-10	3-17	0-10	3-17			
	Metastatic disease at diagnosis	8.6%	21.4%	20%	33%	8.9%	8.4%	43.4%	20%	39.4%	40%	40.7%	38.7%	
	Prognosis (5- year survival)	97%	100%	69.8%	67.3%	88%	88.5%	66.2%	55.8%	41.8%	66.8%	75.4%	82.5%	
Molecular aspects	Genetics	CTNNB1, DDX3X, KMT2D		PTCH1, TP53 KMT2D, DDX3X, MYCN ampl, BCOR, LDB1, GLI2 ampl				MYC ampl, OTX2 gain, SMARCA4, NOTCH, TGF-β			MYCN ampl, CDKN6 apml, SNCAIP duplications			
	Chromosomal abnormalities	Monosomy of chromosome 6		9q deletion; loss of 10q and 17p; gain of 3q and 9p				17q, 1q gain; loss of 5q and 10q			loss of 8, 10, 11; gain of 4, 7, 17, and 18			
	Genetic predisposition	APC (germline), most tumors lack CTNNB1 mutation		SUFU, PTCH1, TP53, PALB2, and BRCA2				PALB2 and BRCA2 (rare)			PALB2 and BRCA2 (rare)			

LCA, large cell/anaplastic; ND, nodular desmoplastic [data from Funakoshi et al. (2023)].

Neuro-oncological balance (modifiable outcome factors)

- Importance of degree of resection
- Importance of neurological outcome
- Importance of adjuvant treatments and complications

Importance of degree of resection

Importance of degree of resection

Extent of resection (EOR) vs age

EOR planning and evaluation

language #005

salience #005

SMN #005

visual #005

language #001

salience #001

SMN #001

auditory #001

attention #001

DMN #001

executive #001

executive #002

DMN #003

executive #003

auditory #003

DMN #004

executive #004

auditory #004

DMN #005

auditory #005

executive #005

visual #001 visual #002

language #003

salience #002

language #002

SMN #002

visual #003

SMN #003

visual #004

SMN #004

3D ΥΠΕΡΗΧΟΣ

Menu Help Import Snap

British Journal of Nonvourgery, February 2009, 25(1): 14-22

informa .

REVIEW ARTICLE

Intra-operative MRI (iop-MR) for brain tumour surgery

NICOLAS FOROGLOU⁴, AMIR ZAMANI² & PETER BLACK³

¹Anastk's Denestr of Thesalmiks, Groce, Department of Neuroscopery, AHEPA Denestry Hoptal, Thesalmiks, Groce, ²Department of Radiology, Brigham and Wimon's Hoptal, Bason, Masachasets, USA, and ³Department of Neurosuppy, Bighan and Women's Hapital, Baten, Masachusen, USA

Ad a Neurochirurgica (2019) 161:1099-1108 https://doi.org/10.1007/s00701-019-03898-1

REVIEW ARTICLE - PEDIATRIC NEUROSURGERY

5-ALA fluorescence-guided surgery in pediatric brain tumors—a systematic review

Michael Schwake¹ · Stephanie Schipmann¹ · Michael Müther¹ · Michaela Köchling¹ · Angela Brentrup¹ · Walter Stummer¹

J Neurosurg Pediatr 27:556-565, 2021

Reporting morbidity associated with pediatric brain tumor surgery: are the available scoring systems sufficient?

Mitchell T. Foster, MRCS, MBChB(Hons),^{1–3} Dawn Hennigan, MSc,¹ Rebecca Grayston, MRes,¹ Kirsten van Baarsen, MD, PhD,¹ Geraint Sunderland, MRCS,^{1,2}

Christopher Paul Millward, MRCS, MSc,^{1,2}

Harishchandra Lalgudi Srinivasan, FRCS Glasgow (Neurosurg),¹ Deborah Ferguson, FRCS(SN),^{1,4} Teddy Totimeh, MPhil, FWACS,¹ Barry Pizer, FRCPCH, PhD,⁵ and Conor Mallucci, FRCS(SN)¹

'Department of Paediatric Neurosurgery, Alder Hey Children's NHS Foundation Trust, Liverpool; "Department of Neurosurgery, Walton Centre NHS Foundation Trust, Liverpool; "Cancer Research UK Brain Tumour Centre of Excellence, The University of Edinburgh; "Department of Paediatric Neurosurgery, Royal Manchester Children's Hospital, Manchester; and "Department of Paediatric Oncology, Alder Hey Children's NHS Foundation Trust, Liverpool, United Kingdom

TABLE 2. Demographics of the patients and details of the cases included

Variable	Value
No. of operations	477
No. of patients	335
Sex	
Male	188
Female	147
Age at surgery, yrs	
Median (IQR)	9 (9)
Mean (SD)	8.46 (5.16)
Tumor location	
Infratentorial	168
Supratentorial	309
Craniotomies	
Primary	235
Secondary	129
Biopsies	113
Quaternary referrals	75

FIG. 1. Flowchart of patient inclusion and exclusion in the study.

Morbidity Burr Hole Surgery (%) All Cases (%) Craniotomy (%) Meningitis 18 (3.77) 16 (3.35) 2 (0.42) Seizures 20 (4.19) 16 (3.35) 4 (0.84) Neurological deficit (any) 64 (13.42) 50 (10.48) 14 (2.94) Neurological deficit (that remained disabling at 30 days) 40 (8.39) 36 (7.55) 4 (0.84) CSF leak 23 (4.82) 21 (4.4) 2(0.42)Hemorrhage, managed medically 7 (1.47) 6 (1.26) 1 (0.21) 0(0)Hemorrhage, managed surgically 1 (0.21) 1 (0.21) Wound infection 9 (1.89) 0 (0) 9 (1.89) Shunt infection 7 (1.47) 6 (1.26) 1 (0.21) Shunt block 3 (0.63) 3 (0.63) 0 (0) Other: 14 (2.94) 13(2.73)1 (0.21) Medical complications 11 (2.31) 11 (2.31) 0 (0)

TABLE 5. Summary of morbidity as measured by the Drake classification

7 strategies to prevent healthcare-associated infections

CLEANING DIRTY ACTERIA WEL CET TION FOAM DANGER AL THER HANDWASHING PROTECTION PROCED RUNNING WATER **UBLIC HEALTH ES** SEPTIC TROY ENTS Ge

GELS

Importance of neurological outcome and function preservation

J Neurosurg 106:582-592, 2007

Motor tract monitoring during insular glioma surgery

GEORG NEULOH, M.D., ULRICH PECHSTEIN, M.D., AND JOHANNES SCHRAMM, M.D.

Department of Neurosurgery, University of Bonn, Germany

Importance of neurological outcome

Importance of neurological outcome

new postoperative neurodeficit

Preoperative deficit resolved 30,7% + improved 28,6%

New neurological deficit(10,7%) 80% in 30 d

Importance of adjuvant treatments and complications

European Journal of Oncology Nursing Volume 41, August 2019, Pages 104-109

Impact of brain tumor and its treatment on the physical and psychological well-being, and quality of life amongst pediatric brain tumor survivors

<u>Ankie Tan Cheung ^a, William Ho Cheung Li ^a ^A ⊠</u>, <u>Laurie Long Kwan Ho ^a, Ka Yan Ho ^a,</u> <u>S.Y. Chiu ^b, Chi-Fung Godfrey Chan ^b, Oi Kwan Chung ^a</u>

Poorer psychological well-being Depression Low self esteem Severely compromised QOL

Management based on Preoperative MRI Grading

Total resection

Total/subtotal resection

Transcallosal

Limited surgery Local irradiation

Treatment algorithm

EETS

Hopital Necker 2003-2017 prospective study

- OS 99,2%
- PFS 72%
- 100 craniotomies και 30 transnasal
- 69% subtotal and Radiotherapy
- Decrease of residual tissue 35,5%

7,8%

Increase residual tissue

0

Somato

Cortico

Thyreo

Gonado

DI

Post op endocrine deficits

Historical Cohort

***p<0,001

Pediatric Brain incidentalomas

- Wide spread use of neuroimaging in children
- More diagnosis of incidentalomas
- Lesion without a clinical impact
- Often suggestive of LGG*
- Management not defined

*may also be a malignant tumor

Reasons for primary imaging:

Treatment Options

- Wait and scan
- Surgical biopsy
- Surgical resection
- Upfront radio- and/or chemotherapy

The dilemma in pediatric Incidentalomas

Unanswered question

- Can imaging predict which tumor will grow
- Will molecular biology help decide treatment course?
- Does early resection/biopsy change treatment course?
- Does early diagnosis change patient outcome?

Nicolas Foroglou

