

Radiation treatment plan for pediatric cancer: a clinical view

Georgios Giakoumettis

Medical Physicist, Medical Physics & Digital Innovation Laboratory, School Of Medicine, Aristotle University Of Thessaloniki, AHEPA University Hospital, Greece

Outline

- Most common pediatric cancers
- Pediatric cancers statistics
- Radiotherapy in Pediatric Cancer
- Photon & Proton Therapy Common techniques
- History
- Artificial Intelligence assisted Systematic Review
- Comparison Proton Beam vs Photon Beam Therapy
- References

Most common pediatric cancers

400.000 children and adolescents of 0-19 yo develop each year cancer. Most common types are:

- Leukaemias,
- Neuroblastomas,
- Wilms' tumours,
- Brain cancers,
- Rhabdomyosarcomas,
- HITBA

- Lymphomas,
- Retinoblastomas,
- Osteosarcomas,
- Ewing's sarcomas

Pediatric Cancer Statistics

- Leukaemia accounts for approximately 35% of all childhood cancers. Although it is more common in children under the age of 10, approximately 1 in 1000 children are diagnosed with leukaemia by the age of 1.
- **Neuroblastoma** accounts for 5%-7% of all childhood malignancies and usually occurs by the age of 5.
- Wilms' tumor accounts for 6-7% of childhood cancer cases. It occurs in about 8 in 10⁶ children < 14 yo.
- Brain cancers account for 15% of paediatric cancers (gliomas and medulloblastomas). The average age of glioma development is about 6 years old.
 Most medulloblastomas occur before the age of 10.

Pediatric Cancer Statistics

- **Rhabdomyosarcoma** accounts for 5-8% of childhood cancers. It usually affects children between the ages of 2-6 and 15-19.
- **Lymphomas** are broadly classified as Hodgkin's and non-Hodgkin's. Hodgkin's generally occurs in individuals between 15-40 years of age.
- Retinoblastoma is the most common eye tumour in children and accounts for 3-4% of all childhood cancers. It usually occurs < 5yo
- **Osteosarcoma** is usually present in bones around the knee whereas Ewing's sarcoma may affect bones of the pelvis, thigh, upper arm, or ribs. Bone cancers are most common in ages 10-20 and they account for about 6% of all childhood

cancers.

Radiotherapy in Pediatric Cancer

Pediatric Cancer	Radiation Therapy
Leukaemia	Not the primary form of treatment – RT mostly used to treat metastases
Neuroblastoma	RT in the guidelines as adjuvant to chemotherapy, and/or surgery
Wilms' tumor	EBRT as part of treatment for more advanced Wilms tumors (stages III, IV, V) and earlier stage tumors with anaplastic histology
Brain cancers	Almost all brain cancers receive RT, either as monotherapy, or as part of a scheme, pre- or post-operative.
Rhabdomyosarcoma	RT to the site of the primary tumor is indicated for the HR and VHR groups, and the majority of Standard Risk Subgroup C patients (SIOP Europe)
Lymphomas	Are usually radiosensitive. RT part of therapy in Hodgking and non- Hodgkin lymphomas
Retinoblastoma	Is a radiosensitive tumor. EBRT/IMRT or Proton Beam therapy has the advantage over surgery of possibly saving vision.
Osteosarcoma	Is not usually radiosensitive. EBRT as adjuvant to surgical excision, if the tumor cannot be completely removed.
Heavy Ion Therapy Research Integration	* * *

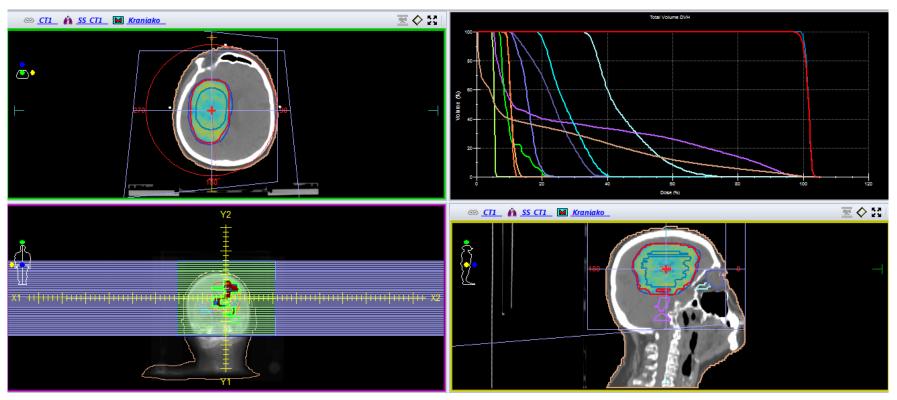
Pediatr Blood Cancer. Author manuscript; available in PMC: 2022 May 1.

Published in final edited form as: Pediatr Blood Cancer. 2021 May;68(Suppl 2):e28344. doi: 10.1002/pbc.28344

Advances in radiotherapy technology for pediatric cancer patients and roles of medical physicists: COG and SIOP Europe perspectives

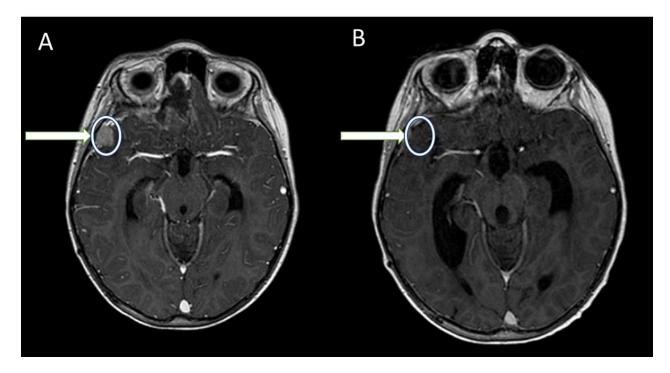
Chia-ho Hua¹, Anthony E Mascia², Enrica Servalli³, Antony J Lomax⁴, Klaus Seiersen⁵, Kenneth Ulin⁶

Author information
Copyright and License information
PMCID: PMC8030241 NIHMSID: NIHMS1591004 PMID: 33818892


Photon therapy - pediatric patients

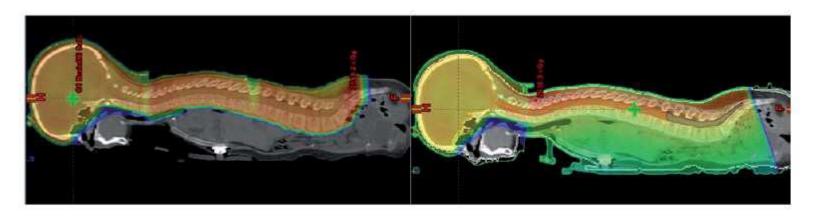
- The standard treatments for various pediatric cancers:
 - 3D Conformal Radiation Therapy (3D-CRT),
 - Intensity-modulated radiation therapy (IMRT),
 - Volumetric-modulated arc therapy (VMAT),
 - Helical Tomotherapy (HT),
 - Stereotactic body radiation therapy (SBRT) for bone tumors, metastatic and recurrent lesions is under investigation,
 - Some centers are now using high dose-rate (HDR) brachytherapy to treat pediatric sarcomas.

Brain Irradiation



VMAT technique delivers the radiation dose continuously as the treatment machine rotates

Re-irradiation of Pediatric Medulloblastoma



A: Recurrence of medulloblastoma, B: Three months after VMAT re-irradiation.

Craniospinal Irradiation

Proton CSI

Photon CSI

{Source: St. Clair, et al (2004)}

Proton therapy - pediatric patients

Pencil-Beam Scanning (PBS)

- Conformity
- Flexibility

Intensity-Modulated Proton Therapy (IMPT)

- More Complex
- Highly Modulated
- Highly Conformal

History of Proton Beam Radiation Treatment

1899: The First Use of Radiation Therapy to Cure Cancer.

1929: Cyclotron invented by Ernest O. Lawrence as a way to accelerate nuclear particles to very high speeds

1946: Robert R. Wilson proposed the use of proton beams for treating cancer.

1948: Berkeley Radiation Laboratory conducts extensive studies on protons and confirms predictions made by Wilson.

1954: First patient treated with protons at Berkeley Radiation Laboratory.

1957: Treatment successfully duplicated on patients in Uppsala, Sweden.

1961: Harvard treats first patient in its cyclotron

1972: UC Davis cyclotron team develops the first method for making pure iodine-123, employed in thyroid imaging and to detect tumors.

History of Proton Beam Radiation Treatment

1974: Los Alamos National Laboratory cyclotron treats first patient with pimeson beam.

1975: Use of ionized particle beams to treat eye cancers pioneered by team of scientists using the Harvard cyclotron.

1978: UCSF and Lawrence Berkeley Laboratory team begins clinical trials of choroidal melanoma treatment with ionized helium beam.

1988: Proton therapy approved by FDA as radiation-treatment option for certain tumors.

1990: Loma Linda University opens first hospital-based proton-beam clinic. The 250 MeV machine is designed and built by Fermilab, where Wilson was the founding director, with \$19.6 million in federal funding.

2001: Northeast Proton Therapy Center at Massachusetts General Hospital treats first patient.

Al-assisted Systematic Review -Methods

- Pubmed and Cochrane Library
- Search terms: "proton beam therapy" AND "pediatric cancer"
- Inclusion Criteria
 - Language: English
 - Type of publication: Original studies and meta-analyses
 - Population: adults < 18 years old
 - Last 10 years
- Exclusion Criteria
 - Type of publication: case reports, reviews, letter to the editor
 - Population: Adult

Mourad Ouzzani, Hossam Hammady, Zbys Fedorowicz, and Ahmed Elmagarmid. <u>Rayyan — a web</u> <u>and mobile app for systematic reviews</u>. Systematic Reviews (2016) 5:210, DOI: 10.1186/s13643-016-0384-4.

Al-assisted Systematic Review -Results

- Literature search results: 584 articles
- Duplicates deleted: 2
- Included articles = 37
- Excluded articles = 545
 - Wrong study design = 452
 - Case Reports = 25
 - Wrong population = 35
 - Animal study = 12
 - Wrong publication type = 21

Mourad Ouzzani, Hossam Hammady, Zbys Fedorowicz, and Ahmed Elmagarmid. <u>Rayyan — a web</u> <u>and mobile app for systematic reviews</u>. Systematic Reviews (2016) 5:210, DOI: 10.1186/s13643-016-0384-4.

Guidelines???

Cancer Treatment Reviews 98 (2021) 102209

Contents lists available at ScienceDirect

Cancer Treatment Reviews

journal homepage: www.elsevier.com/locate/ctrv

Anti-tumour Treatment

Proton beam therapy for children and adolescents and young adults (AYAs): JASTRO and JSPHO Guidelines

Masashi Mizumoto^a, Hiroshi Fuji^b, Mitsuru Miyachi^c, Toshinori Soejima^d, Tetsuya Yamamoto^e, Norihiro Aibe^f, Yusuke Demizu^d, Hiromitsu Iwata⁸, Takayuki Hashimoto^h, Atsushi Motegiⁱ, Atsufumi Kawamura^j, Keita Terashima^k, Takashi Fukushima¹, Tomohei Nakao^m, Akinori Takadaⁿ, Minako Sumi^{o, ae}, Junjiro Oshima^p, Kensuke Moriwaki^q, Miwako Nozaki^r, Yuji Ishida^s, Yoshiyuki Kosaka^t, Keisuke Ae^u, Ako Hosono^v, Hideyuki Harada^w, Etsuyo Ogo^x, Tetsuo Akimoto¹, Takashi Saito^a, Hiroko Fukushima^y, Ryoko Suzuki^y, Mitsuru Takahashi^z, Takavuki Matsuo^{aa}, Akira Matsumura^{ab}, Hidekazu Masaki^{ac}, Hajime Hosoi^c, Naoyuki Shigematsu^{ad}, Hideyuki Sakurai^{a,*}

Recommendation and Evidence level

Clinical	Strength of Recommendation
Medulloblastoma	B (Moderate)
Ependymoma	C (Low)
Unresectable/Postoperative Persistent Craniopharyngioma	C (Low)
Whole Ventricle Irradiation and Craniospinal Irradiation for Intracranial Germ Cell Tumor	D (Very Low)
Rhabdomyosarcoma	C (Low)
Postoperative radiotherapy for a Primary Lesion of Neuroblastoma	D (Very Low)
Unresectable/Incompletely Resectable Pediatric Osteosarcoma	C (Low)
Ewing's Sarcoma Family of Tumors (ESFT)	D (Very Low)
Unresectable/Incompletely Resectable Spinal Chordoma and Chondrosarcoma	C (Low)

Heavy Ion Therapy Research Integration

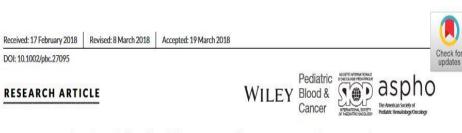
Comment > Clin Oncol (R Coll Radiol). 2023 May;35(5):292-300. doi: 10.1016/j.clon.2023.02.009. Epub 2023 Feb 16.

Outcomes of Patients Treated in the UK Proton Overseas Programme: Non-central Nervous System Group

E Hwang ¹, S Gaito ², A France ³, A M Crellin ⁴, D I Thwaites ⁵, V Ahern ⁶, D Indelicato ⁷, B Timmermann ⁸, E Smith ⁹

Affiliations + expand PMID: 36813694 DOI: 10.1016/j.clon.2023.02.009 Free article

- 86.1% survival rate and 90.3% local control for non-CNS tumors in children.
 - Grade 3 toxicity rate 12.6%
 - Cataracts most common complication.
- Effective disease control,
- Acceptable toxicity rates,
 - Especially for rhabdomyosarcoma and Ewing sarcoma


Practical Radiation Oncology Available online 10 August 2024 In Press, Corrected Proof ⑦ What's this?

Basic Original Report

Evolution of Proton Radiation Therapy Brainstem Constraints on the Pediatric Proton/Photon Consortium Registry

Dora Correia MD ^{a b c 1} $\stackrel{\circ}{\sim}$ $\stackrel{\circ}{\boxtimes}$, Daniel J. Indelicato MD ^d , Arnold C. Paulino ME) ^e ,
Ralph Ermoian MD ^f , Stephen Mihalcik MD ^g , Stephanie M. Perkins MD ^h ,	
Christine Hill-Kayser MD ⁱ , Victor S. Mangona MD ^j , Jae Lee MD ^k ,	
John Han-Chih Chang MD ^I , Nadia N. Laack MD, MS ^m , Young Kwok MD ⁿ ,	
John Perentesis MD °, Ralph Vatner MD ^P , Ronak Dave MD ^{q r 1} , Sara L. Gallot	to MS °,
Miranda P. Lawell MS ^a , Benjamin V.M. Bajaj MA ^a , Keith W. Allison MS ^a , Aliso	Perry BSN °
Torunn I. Yock MD, MCH ^a	

Meta-analysis of the incidence and patterns of second neoplasms after photon craniospinal irradiation in children with medulloblastoma

Abhishek Bavle^{1,2} Sayani Tewari^{1,2} Amy Sisson³ Murali Chintagumpala^{4,5} Michael Anderson^{2,6} Arnold C. Paulino⁷

Proton Beam vs Photon Beam THx

Aspect	Proton Beam Therapy	Photon Beam Therapy
Radiation Type	Protons (charged particles)	Photons (X-rays, electromagnetic waves)
Energy Deposition	Energy peaks at Bragg peak, sparing tissue beyond the tumor	Energy is deposited along the entire path (before, in, and after the tumor)
Precision	Highly precise, minimal damage to healthy tissue	Less precise, affects more surrounding tissue
Side Effects	Fewer side effects, especially long-term	More side effects, potential for secondary cancers
Clinical Use	Pediatric cancers, tumors near critical structures	Common cancers, broader applications
Cost and Availability	More expensive, limited availability	More affordable, widely available

REFERENCES

1. Athiyaman H, Mayilvaganan A, Chougule A, Joan M, Kumar HS: Estimation of radiation-induced second cancer risk associated with the institutional field matching craniospinal irradiation technique: A comparative treatment planning study. Rep Pract Oncol Radiother. 2019, 24:409-420. 10.1016/j.rpor.2019.06.004

2. Chen J, Chen C, Atwood TF, et al.: Volumetric modulated arc therapy planning method for supine craniospinal irradiation. Journal of Radiation Oncology. 2012, 1:291-297. 10.1007/s13566-012-0028-9

3. Correia D, Indelicato DJ, Paulino AC, et al.: Evolution of Proton Radiation Therapy Brainstem Constraints on the Pediatric Proton/Photon Consortium Registry. Pract Radiat Oncol. 2024. 10.1016/j.prro.2024.05.013

4. Hua CH, Mascia AE, Seravalli E, Lomax AJ, Seiersen K, Ulin K: Advances in radiotherapy technology for pediatric cancer patients and roles of medical physicists: COG and SIOP Europe perspectives. Pediatr Blood Cancer. 2021, 68 Suppl 2:e28344. 10.1002/pbc.28344

5. Hwang E, Gaito S, France A, et al.: Outcomes of Patients Treated in the UK Proton Overseas Programme: Non-central Nervous System Group. Clin Oncol (R Coll Radiol). 2023, 35:292-300. 10.1016/j.clon.2023.02.009

6. Mizumoto M, Fuji H, Miyachi M, et al.: Proton beam therapy for children and adolescents and young adults (AYAs): JASTRO and JSPHO Guidelines. Cancer Treat Rev. 2021, 98:102209. 10.1016/j.ctrv.2021.102209

7. Seravalli E, Bosman M, Lassen Y, et al.: Acta Oncologica Dosimetric comparison of five different techniques for craniospinal irradiation across 15 European centers: analysis on behalf of the SIOP-E-BTG (radiotherapy working group) Dosimetric comparison of five different techniques for craniospinal irradiation across 15 European centers: analysis on behalf of the SIOP-E-BTG (radiotherapy working group) A. Acta Oncologica. 2018, 57. 10.1080/0284186X.2018.1465588

8. Pollul G, Bostel T, Grossmann S, et al.: Pediatric craniospinal irradiation with a short partial-arc VMAT technique for medulloblastoma tumors in dosimetric comparison. Radiat Oncol. 2020, 15:256. 10.1186/s13014-020-01690-5

9. Baliga S, Yock TI: Proton beam therapy in pediatric oncology. Curr Opin Pediatr. 2019, 31:28-34. 10.1097/MOP.000000000000724

10. Giakoumettis G, Mantzavinou A, Moschos G, Giakoumettis D, Capizzello A: Re-irradiation of Pediatric Medulloblastoma: A Case Report and Systematic Review. Cureus. 2022, 14:e31585. 10.7759/cureus.31585

THANK YOU

