Lund jet plane @ CMS

Cristian Baldenegro Barrera (MIT)

LHC-EW WG: Jets and EW bosons Sep 18th 2024

CMS Lund plane setup

Anti-k_T jets with $p_T > 700$ GeV & $|y| < 1.7$ (inclusive jet selection)

Two distance parameters: R = 0.4 and 0.8 (analysis done separately for each R)

Jet substructure using charged-particle constituents

(NB: used "charged-hadron subtraction" for pileup mitigation, PUPPI continuous weights not optimal for Cambridge–Aachen tree measurements)

ALICE/CMS Lund plane coordinates ATLAS Lund plane coordinates

 k_{τ} : proxy for hard-scale of 1→2 branching

Weakly & strongly coupled regions separated via "horizontal" cuts

edge due to fast drop of ϱ (**k**_T, **ΔR**) Experimentally, sensitive to tracking efficiency effects, large uncertainties at kinematical

 $z: p_{T}$ -balance between core & emission; less correlation with ΔR

 resilient against detector smearing effects, tracking inefficiencies, charged p_{T} scale uncertainties, ...

k_τ scale "fuzzier" towards smaller ΔR (k_T = z p_T^{mother} ΔR)

Matching emissions at detector level and particle level

Migration matrix and other MC-based corrections derived from matched part-level and det-level splittings Geometrical matching is done univocally in η vs φ (iterating through both det-level and part-level list of splittings)

4

selected detector effects

relevant close to the edge ($p_T^{\text{soft}} \sim p_T^{\text{hard}}$):

 $p_T^{subject}$ smearing, constituents lost in reconstruction, clustering history can be distorted (e.g., branch swaps)

residual PU contributions (large ΔR, $\mathsf{low}\ \mathsf{k}_\mathsf{T}$)

small-angles: spatial resolution, pixel cluster merging Δ R ~ O(10⁻³ – 10⁻²)

detector-level statistical correlations

LJP is a multicount observable (i.e., multiple entries per jet) \rightarrow bins are statistically correlated at det level

Bin-to-bin correlations of up to ~5–10% prior to unfolding, correlations can be "long-range" due to angle-ordered CA tree

Correlations provided as input to unfolding

Systematic uncertainties

Shower & hadronization model uncertainty (HERWIG7 vs PYTHIA8)

(2–7% in the bulk, 10% at kinematical edge)

decorrelated into prior bias ⊗ response pieces

Tracking reco. efficiency model uncertainty,

1-2% in bulk, dominates at 10-20% at edge

Dropped 3% of tracks in simulation to cover data-to-simulation differences

Procedure must be refined for future measurements (+ include ΔR dependence)

Subleading components (<~ 1%):

Parton shower scale Response matrix stats Jet energy scale and resolution uncertainties Pileup modeling

Cristian Baldenegro (MIT)

Dominated by **shower & hadronization modeling** in bulk of Lund plane & by **tracking efficiency** at high k_{τ}

CMS primary Lund jet plane densities

 $p_T^{jet} > 700$ GeV, charged particles for substructure

Lund vs cluster fragmentation? FSR cutoff differences? Hadronization region (k_{τ} ~ **1 GeV**)

Cristian Baldenegro (MIT)

9

Reminder that $\alpha_{\textrm{S}}^{\textrm{\,FSR}}(\textrm{m}_\textrm{Z})$ should not be treated as any other MC tuning parameter

Sensitivity to [recoil scheme](https://arxiv.org/abs/1912.06509) choice, **important ingredient to reach NLL accuracy**

LJP data favors q_4q_5 +veto scheme, consistent with trends in event shape variables at LEP

Running of $\alpha_{\mathtt{S}}$ in the jet shower

Recall LO pocket formula for Lund density:

$$
\frac{1}{N^{\text{jets}}} \frac{\mathrm{d}^2 N_{\text{emissions}}}{\mathrm{d}\ln(k_T)\mathrm{d}\ln(R/\Delta R)} \simeq \frac{2}{\pi} C_R \alpha_s(k_T)
$$

Running α_{s} **(k_T) from few GeV to ~60 GeV qualitatively describes the data** (Assuming q/g fractions from PYTHIA8)

Cute to see, but breaks down at large angles ΔR , close to the edge, etc

Described well by pQCD calculations (NLO+NLL+NP)

Calculations from A. Lifson, G. Salam, G. Soyez [JHEP10\(2020\)170](https://link.springer.com/article/10.1007/JHEP10(2020)170)

NP corrections account for $k\rightarrow k$, shift

Heavy-flavor quark jet substructure

Radiation pattern of light-quark & gluon-initiated jets governed by soft & collinear divergences of QCD

Heavy quark mass term "regularizes" QCD divergences \rightarrow Harder fragmentation, dead cone effect, ...

Massive splitting function

14

Contamination of heavy-flavor hadron decays

Decays **distort** the QCD radiation pattern of interest

For c-jets, one can use exclusive D meson decays (e.g., $D^0 \rightarrow K^- \pi^+$) to mitigate it

For b jets, exclusive decays (eg $B^+ \rightarrow (J/\psi \rightarrow \mu^+ \mu^-) K^+$) are rarer, need to use other approaches (TMVA-based "clustering" of b hadron decays)

Collinear emissions suppressed for D⁰ -tagged jets

CMS-PAS-HIN-24-007, see also Jelena Mijuskovic's [talk at BOOST'24](https://agenda.infn.it/event/37093/contributions/234282/attachments/124158/182468/JMijuskovic_BOOST2024.pdf)

Substructure-dependent $D^0 \rightarrow K^- \pi^+$ yield extraction

D-jet vs **inclusive jet***

Bottom quark jet substructure

CMS-PAS-HIN-24-005

[see also Lida Kalipoliti's](https://agenda.infn.it/event/37093/contributions/234284/attachments/124152/182470/Kalipoliti_boost2024.pdf) [talk at BOOST'24](https://agenda.infn.it/event/37093/contributions/234284/attachments/124152/182470/Kalipoliti_boost2024.pdf)

More asymmetric momentum

Closing remarks

CMS Lund jet plane density, extending to other fronts (heavy-flavor jet substructure)

Analyses ongoing in heavy-ions (not shown here), interest in using LJP to probe spacetime evolution of quark-gluon plasma

Data/MC differences of 10–20%. Most important difference for PYTHIA8 tunes is the $\alpha_{\sf S}^{\sf FSR}(m_{\sf Z})$ value. **HERWIG7 angle-ordered** describes better the data than **HERWIG7 dipole Factorization of effects can be exploited in MC tuning** ¹⁹

Corrections to particle level

Sequential set of corrections:

- 1. **Background:** bin-by-bin correction to account for det-level emissions not matched to truth-level emissions.
- 2. **Multidimensional regularized unfolding (**D'Agostini) of primary Lund jet plane (p_T^{iet}, k_τ, ΔR).
- 3. **Efficiency:** bin-by-bin correction to account for hadron-level emissions without matching.

smearing becomes more important at high k_{τ} **(kinematical edge)**

…Or could it be something else, e.g., the FSR kT cutoff choice? average pp Lund density: parton level *G. Salam's slide*

Hadron-level: FSR k_r cutoff choice shouldn't matter...

average pp Lund density: hadron level (with underlying event / MPI)

22

G. Salam's slide

Could it lead to double counting?

PYTHIA8 shower k_{T,cutoff} variations (k_T ~ 1 GeV) [arXiv:2312.16343, accepted by JHEP](https://arxiv.org/abs/2312.16343)

[arXiv:2312.16343, accepted by JHEP](https://arxiv.org/abs/2312.16343)

Shower k_{T,cutoff} decouples at k_T ~ 4 GeV

String tension sensitivity

$\overline{High k_{\tau}}$ > 8 - 36 GeV

