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Definition of Lund-based observables

Anti-kt jet

Hemisphere in e+e- (kt, θ)

C/A reclustered jet
…

OUTPUTINPUT
ln(kt)

ln(1/θ)

kt,max

kt = pt,jetR
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of the LJP being insensitive to nonperturbative effects. To
illustrate the dark sector LJP, we first consider the LJP after
the dark parton shower, but before hadronization and
subsequent decays to Standard Model particles. In
Fig. 1, the LJP after the dark shower is compared to the
naive prediction for the LJP based on Eq. (1). In general,
this prediction provides a good description of the behavior
of the LJP for kt ≳ ΛD.
Unlike in the case of the Standard Model, the dark sector

can involve widely separated scales since the dark hadron
masses and the dark confinement scale are free parameters.
This can lead to additional structures in the LJP, which has
the largest nontrivial impact at the dark sector decay stage.
Note that, for our main benchmark example, the dark sector
masses are taken to be of order ΛD, so these two effects lie
on top of each other in the LJP. Examples where these
scales are not equal are provided in the Supplemental
Material [62]. The effects of the remaining stages of event
generation are shown in Fig. 2, which provides the LJP, as
well as the ratio of LJP between successive stages of the
event generation. The LJP is normalized to the number of

jets, such that the integral of the plane provides the average
number of emissions per jet. Just as in the Standard Model
LJP, we expect hadronization effects to be important for
regions around the ΛD scales. For the choices of parameters
here, the Standard Model particles produced from the
decays of the dark sector hadrons have relatively low pt,
due to the relatively low mass of the dark hadrons.
Therefore, the Standard Model parton shower has very
little impact on the LJP, since they are already near the scale
at which they will hadronize.
As demonstrated above, the behavior of the LJP for dark

parton showers can be predicted at leading logarithmic
accuracy, and improvements to parton shower models will
enable more accurate predictions for the dark shower
behavior. However, hadronization effects remain largely
unconstrained, and any predictions are heavily reliant on
specific models of these effects. For the Standard Model,
hadronization parameters are tuned using data, but this is
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FIG. 1. The LJP from dark sector quark pair production events
after (top) the dark parton shower, (middle) using the leading log
prediction, and (bottom) the ratio of these.

FIG. 2. The left column provides the LJP for the following
stages: (top) dark sector (DS) hadronization, (second) dark sector
decay, (third) Standard Model shower, and (bottom) Standard
Model hadronization. The right column provides the ratio of the
LJP for the following: (top) the dark shower to the dark hadron,
(second) dark hadron to dark hadron decay, (third) dark hadron
decay to Standard Model shower, and (bottom) the Standard
Model shower to Standard Model hadron.
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The Lund-plane: central tool for HEP

Heavy-ions

parton distribution functions [9–11], the initial hard-
scattering (prior to QGP formation), and early vacuumlike
QCD radiation [12,13]. Medium-induced emissions, trig-
gered by the interaction between the jet particles and the
QGP color fields [14–17], in most cases, are assumed to be
perturbative. Their description requires phenomenological
input, namely a model of the QGP. A pQCD description
of jet evolution breaks down when the partonic cascade
reaches energy scales around the QGP temperature,
that is, OðΛQCDÞ. Then, other nonperturbative effects such
as thermalization and hadronization become relevant.
Thermalization can be studied with QCD kinetic theory
[18–20] (using an artificially big coupling), while the
formation of hadrons rely on phenomenological modeling
[21–23]. Alternatively, strongly coupled descriptions of
parton energy loss have also been studied using the
gauge/gravity duality [24–28]. While they offer a natural
scenario for jet hydrodynamization in a strongly coupled
plasma, the underlying quantum field theory (QFT) is not
QCD, but N ¼ 4 Super Yang-Mills (SYM), implying the
presence of large theoretical uncertainties in the extrapola-
tion of the results to the system actually produced in heavy-
ion collisions.
Due to the intricate interplay among the aforementioned

effects and the multiscale nature of the process, an end-to-
end analytic approach to in-medium jet evolution that
matches the experimental precision is currently beyond
reach. As a consequence, the theoretical interpretation of jet
observables relies almost exclusively on phenomenological
modeling by means of Monte Carlo (MC) event generators.
Several implementations of in-medium parton showers
have been proposed in the literature [13,29–38]. They
differ not only in the precision in which they describe the
individual ingredients of jet evolution but also in the way
they assemble them. A paradigmatic example, that will be
relevant in this paper, is the interleaving of vacuum and
medium-induced emissions. While some approaches
implement either a partial or an exact factorization between
vacuum and medium-induced emissions [13,39], others
include them on equal footing in their evolution equations
[31,40,41]. Experimental measurements have not yet been
able to pin down which is the correct approach [42–44].
Consolidating the theoretical description of in-medium jet
evolution thus requires experimental guidance by means of
more differential and/or precise measurements.
This paper aims to disentangle different stages of jet

evolution by combining two jet substructure observables.
That is, we study the angular separation between subjets as
a function of their relative transverse momentum. The latter
serves as an auxiliary scale that allows us to sweep through
different phases of jet evolution in a controlled fashion. Our
proposal strongly relies on the use of high-pt jets to ensure a
clear separation between perturbative and medium-related
scales. By means of state-of-the-art Monte Carlo simula-
tions, we quantitatively address the following fundamental
questions:

(1) Is there a regime of pure vacuum evolution in the in-
medium development of a parton shower?

(2) Does energy loss depend on the opening angle of the
splitting? If so, at which energy scale does this effect
become relevant?

(3) Are elastic scatterings with the medium visible in jet
substructure observables?

The underlying philosophy and technical details of the
proposed observable together with its connection to pre-
vious measurements are explained in Sec. II. The concrete
definition of our proposed observable is given in Sec. II B.
The proton-proton baseline is studied in Sec. III including a
comparison between state-of-the-art pQCD and the vacuum
prediction of jet quenching event generators. Quantitative
results showing the discriminating power of the proposed
observable in heavy-ion collisions can be found in Sec. IV.
We end up with a brief summary of our results in Sec. V.
The experimental feasibility of this measurement with the
upcoming runs 3 and 4 of the LHC, some analytic
considerations, the impact of energy loss prescriptions
and medium response, and the choice of reclustering
algorithm are studied in Appendices A–E, respectively.

II. ANALYSIS STRATEGY

Our goal is to design and study an observable to probe
certain corners of the radiation phase space of an in-
medium jet, as sketched in a Lund-plane fashion in Fig. 1.
Before entering into the precise definition of the observ-
able, let us briefly comment on the most relevant features of
this radiation phase space. All along this discussion we will
assume a simplified description of the QGP. Namely, we
will consider the so-called brick approximation in which
the medium is static, isotropic, homogeneous, and with a
fixed length L. We remark that in the Monte Carlo section,
a realistic medium description will be used.

FIG. 1. Sketch depicting the different regimes of in-medium jet
evolution in a Lund-plane style representation. The gray bands
around θ ¼ θc and tf ¼ L indicate that these two scales fluctuate
on an event-by-event basis.
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Figure 1: Illustration showing the process by which the primary and higher-order Lund jet planes are constructed.
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Figure 2: Lund jet plane emission density for (a) hadronically decaying boosted W bosons and (b) QCD background
jets for UFO R = 1.0 CS+SK soft-drop jets having pT > 200 GeV and |⌘ | < 2.0.

6 Tagger optimizations

In this section the identification algorithms (“taggers”) for hadronically decaying W-bosons used in the
study are described. This study is a classification problem where labels of 1 and 0 were given for a
signal-like jet and background-like jet, respectively as defined in 4.2. Two W-boson taggers were trained
in this study, both of them are based on the LundNet model introduced in Ref. [55] but the latter uses
in addition an adversarial neural network in order to achieve decorrelation with respect to the jet mass.
These two taggers are compared with three "baseline" taggers which are part of the current ATLAS
recommendation for tagging boosted W-bosons following the methodology in Refs. [8, 9].
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Figure 2: Lund jet plane emission density for (a) hadronically decaying boosted W bosons and (b) QCD background
jets for UFO R = 1.0 CS+SK soft-drop jets having pT > 200 GeV and |⌘ | < 2.0.

6 Tagger optimizations

In this section the identification algorithms (“taggers”) for hadronically decaying W-bosons used in the
study are described. This study is a classification problem where labels of 1 and 0 were given for a
signal-like jet and background-like jet, respectively as defined in 4.2. Two W-boson taggers were trained
in this study, both of them are based on the LundNet model introduced in Ref. [55] but the latter uses
in addition an adversarial neural network in order to achieve decorrelation with respect to the jet mass.
These two taggers are compared with three "baseline" taggers which are part of the current ATLAS
recommendation for tagging boosted W-bosons following the methodology in Refs. [8, 9].
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 The Lund jet plane is used in a broad array of high-energy physics topics
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Figure 2: Lund-diagram illustrations of the subleading-NC issue in the showers that we

consider. As a starting point we take a right (left)-moving quark (anti-quark), and gluon g1

emitted at the ⌘� ln p? coordinate shown in the big (“primary”) triangle. The phase-space

for emission of a further gluon from the qg1 dipole corresponds to the shaded area to the

right of g1 on the primary triangle, and the right-hand face of the “leaf” that comes out

of the plane; analogously the phase-space for emission from the q̄g1 dipole corresponds to

the shaded area of the primary triangle to the left of g1 and to the left-hand face of the

leaf. The colour factor associated with the phase-space region is indicated by the colour

of the shading: grey denotes CF , while blue denotes CA/2. The left-hand diagram shows

the correct pattern, the right-hand diagram shows the outcome of the Pythia and Dire

showers.

4. q[g1] ! qg2[g1] which is analogous to Eq. (3.9),

1

2

✓
⌘1 + ln

1

v1

◆
⌧ ⌘2 ⌧ ln

1

v2
! dP2 = CF

2↵s(|p2?,2|)

⇡
d⌘2

dp?,2

p?,2
. (3.12)

The main message to retain from this analysis is that there is a region that has both

soft and collinear enhancements, for each of the two emissions, where instead of a C
2
F

colour factor, one obtains a CFCA/2 colour factor, i.e. an incorrect subleading Nc term.

This is illustrated in the Lund diagram of Fig. 2: panel (a) shows the correct assignment

of colour factors across phase-space for radiation below the scale of g1. The coloured

“leaf” that comes out of the plane represents the additional phase-space that opens up

following emission of g1, with a CA/2 colour factor associated with each of its two faces.

The restriction of the phase-space to that region is a consequence of angular ordering, as

discussed for example some time ago in Ref. [52]. Panel (b) shows the assignment that is

e↵ectively made in the case of the Pythia and Dire showers, with the coloured area (CA/2)

now extending into the primary Lund triangle.7 Since regions with simultaneous soft and

collinear enhancements (i.e. extended areas in the Lund diagram) tend to be associated

with leading double logarithms in distributions of common observables, one may expect

7Note that since we start with a qq̄ system, the primary plane emits only from the front face. For

an initial gg system, one might instead choose to represent emissions from both the front and rear faces,

reflecting the presence of two CA/2 dipoles.
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The Lund-plane: central tool for pQCD
[Banfi, Salam

, Zanderighi, JH
EP 

03 (2005) 073]
ln kt

η

/Q
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parametrization
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parametrization

leg 2
parametrization

v  Q1/a
tk ∼

tk  Q∼

v  Q1/(a+b1)kt ∼

v  Q1/(a+b2)
tk ∼

Figure 1: The η–ln(kt/Q) plane for a single emission, together with a representation

(shaded area) of the region in kt and η over which the integrand of eq. (2.10b) is non

zero. The specific positions of the lines correspond to the case of an observable with

a1 = a2 ≡ a = 1 and b1 = 1, b2 = 3/2. For simplicity, the φ-dependence of the problem

has been neglected. The insets correspond to a magnification by a factor of order ln 1/v.

Further details are given in the text.

shaded region. If one makes the assumption that one can extend the soft and collinear

parametrisation (2.1) into the hard collinear region, then one finds, using eq. (2.6),
that for a given fixed z(!), the observable scales as ka!+b!

t . The scales associated with
the lateral corners of the shaded region are then

kt ∼ v1/(a!+b!)Q . (2.11)

In practice, in the hard collinear region, the observable V ({p̃}, k) may depart from

its soft and collinear parametrisation (2.1). Such a situation is illustrated in the
right-hand inset of fig. 1, which represents the true boundary of the shaded region
(solid line), V ({p̃}, k) = v, and the boundary that would be obtained based on

the soft-collinear parametrised form for V (dashed line). As long as the difference
between the true form of the observable and the parametrisation is just a non-zero

z(!)-dependent factor of order 1, then eq. (2.11) remains valid. Furthermore, when
evaluating eq. (2.10b), replacing the true observable V ({p̃}, k) with its parametrised
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Figure 1: Phase space for emissions on the (log 1
z , log R0

θ ) plane. In the strongly-ordered

limit, emissions above the dashed line (eq. (2.2)) are vetoed by the soft drop condition.

For β > 0, soft emissions are vetoed while much of the soft-collinear region is maintained.

For β = 0 (mMDT), both soft and soft-collinear emissions are vetoed. For β < 0, all

(two-prong) singularities are regulated by the soft drop procedure.

No relative scaling is assumed between energy fraction z and splitting angle θ for soft-

collinear modes. In these logarithmic coordinates, the emission probability is flat in the

soft-collinear limit. In the soft limit, the soft drop criteria reduces to

z > zcut

(
θ

R0

)β

⇒ log
1

z
< log

1

zcut
+ β log

R0

θ
. (2.2)

Thus, vetoed emissions lie above a straight line of slope β on the (log 1
z , log R0

θ ) plane, as

shown in figure 1.

For β > 0, collinear radiation always satisfies the soft drop condition, so a soft-drop

jet still contains all of its collinear radiation. The amount of soft-collinear radiation that

satisfies the soft drop condition depends on the relative scaling of the energy fraction z to

the angle θ. As β → 0, more of the soft-collinear radiation of the jet is removed, and in

the β = 0 (mMDT) limit, all soft-collinear radiation is removed. Therefore, we expect that

the coefficient of the double logarithms of observables like groomed jet mass (and C(α)
1 )

will be proportional to β, when β is small. Similarly, because the soft drop procedure does

not change the structure of collinear emissions, observables like the groomed jet energy are

IRC safe. Note that running β > 0 soft drop in tagging mode is not IRC safe, since a jet

would (would not) be tagged if it contained two (one) collinear particles.

In the strict β = 0 or mMDT limit, collinear radiation is only maintained if z > zcut.

Because soft-collinear radiation is vetoed, the resulting jet mass (and C(α)
1 ) distributions

will only exhibit single logarithms, as emphasized in refs. [59, 60]. Because the structure
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Two examples of Lund-based observables calculable in pQCD

ln(kt)

ln(1/θ)R

ρ(θ, kt) =
dN

d ln ktd ln(1/θ)
⟨N(kt > kt,cut)⟩

ln(kt)

Primary Lund-plane density Lund multiplicity

ln(1/θ)

kt,cut

R
[Lifson, Salam, Soyez JHEP 10 (2020) 170]

[Medves, ASO, Soyez, JHEP 10 (2022) 156, 
JHEP 04 (2023) 104]
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The primary Lund-plane density: resummation structure

ρLO(θ, kt) =
2αsCi

π

In the soft-and-collinear limit, the Lund plane density is simply given by

Beyond LO/LL, two sources of logarithmic enhancements appear 

αn+1
s lnm θ lnn−m pt

kt

0 ≤ m ≤ nwith

So far, the full set of single-logarithmic corrections has been computed 
[Lifson, Salam, Soyez JHEP 10 (2020) 170]
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The primary Lund-plane density: NLL resummation 

Running coupling corrections
ln(kt)

ln(1/θ)R

ρrc(θ, kt) =
2α1ℓ

s (kt)Ci

π

1
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The primary Lund-plane density: NLL resummation 

Running coupling corrections

ρrc(θ, kt) =
2α1ℓ

s (kt)Ci

π

ln(kt)

ln(1/θ)R

Hard-collinear corrections αn+1
s lnn(1/θ)

z > 1/2a) Flavour switch: 

b) Energy loss: 

1

2
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The primary Lund-plane density: NLL resummation 

Running coupling corrections

ρrc(θ, kt) =
2α1ℓ

s (kt)Ci

π

ln(kt)

ln(1/θ)R

Hard-collinear corrections αn+1
s lnn θ

Soft, large-angle corrections

[Ellis, Marchesini, Webber. 
Nucl.Phys.B 286 (1987) 643]

αn+1
s lnn ptθ

kt

ln(R/(R − θ))

1

2

3
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The primary Lund-plane density: theory-to-data

J
H
E
P
1
0
(
2
0
2
0
)
1
7
0Figure 12. Comparison between our calculations and the ATLAS measurement from ref. [84],

for different bins of ∆. The dashed vertical lines, corresponding to z = kt
p⊥∆ for p⊥ = 675GeV

and several kt values, are meant to indicate the transverse scales one is typically sensitive to. The
shaded grey bands indicate bins where the relative uncertainty on the non-perturbative corrections
is larger than 10%. The shaded red regions indicate that our calculation is incomplete because of
the missing resummation of the boundary logarithms.

and slices in z in figure 13. The vertical dashed lines correspond to the kt scales estimated

using z = kt/(p⊥∆), i.e. assuming a jet at the lower p⊥ cut of 675GeV and a leading

parton/subjet carrying a fraction x = 1 of the initial jet transverse momentum. The shaded

grey bands indicate regions where the uncertainty on the non-perturbative corrections is

larger than 10%. Shaded red bands correspond to the regions sensitive to the boundary

logarithms discussed in section 3.3.2. We recall that we have not resummed these terms,

so our calculation should be considered incomplete in the red shaded regions. A rough

estimate of their potential size is given in appendix B.

For all unshaded bins in figures 12 and 13, we see agreement between our predictions

and the data to within the experimental and theoretical uncertainties. Generally speak-

ing, the theoretical uncertainties are larger than the experimental ones, though they are

– 28 –

ρLO(θ, kt) agrees with data in bulk of LP. NkLL terms required elsewhere

[CMS Collab JHEP 05 (2024) 116]
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 [GeV]Tk

AK8 jets

| < 1.7
jet

 > 700 GeV, |yjet

T
p

CMS  (13 TeV)-1138 fb

Data

Soft and collinear limit prediction

) = 0.118
Z

(msα), with 
T

(ksαR
eff Cπ

2 = ρ

 R) < 1.000∆0.667 < ln(R/

 R < 0.411∆0.294 < 

1XPEHU�RI�DFWLYH�SDUWRQ�IODYRUV�FKDQJHV

50

Figure 15. Measured LJP distribution for AK8 jets, compared with the leading-order perturbative-
QCD asymptotic prediction in the soft and collinear limit. The grey boxes represent the total
experimental uncertainty from the measured data. For the prediction, an effective color factor of
Ceff

R = 0.59 CF + 0.41 CA ≈ 2 is assumed, as described in the text. The strong coupling αS evolves
with kT using the one-loop β function with αS(mZ) = 0.118. The theoretical uncertainty band is
calculated with variations of the renormalization scale up and down by factors of 2. The discontinuity
is due to the change of the number of active flavors when kT reaches the mass of the bottom quark,
which is assumed to be 4.2GeV.

value [94]. The soft and collinear limit prediction with these basic assumptions qualitatively
describes the shape and normalization of the unfolded distribution in the collinear region,
consistent with the expectation that the dominant mechanism responsible for the rise of
the LJP density at low kT is due to the running of αS in the jet shower, with kT as the
characteristic energy scale used in the evolution of αS.

Although the asymptotic formula captures the broad features of the LJP density in
terms of the running of αS for collinear emissions, higher-order corrections are necessary
to better describe the radiation pattern of the jet. Thus, we also present a comparison of
the unfolded distributions with the theoretical calculations of the primary LJP density by
A. Lifson, G.P. Salam, and G. Soyez using the setup described in ref. [10]. The calculations
are adapted to match the particle-level definition of the jets and their substructure presented
in this analysis. The calculations include several pieces associated with the resummation

– 29 –
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Lund multiplicity: DL resummation

⟨N⟩DL = 1 +
Ci

CA

∞

∑
n=1

ᾱn ∫
∞

0
dη1 ∫

∞

η1

dη2…∫
∞

ηn−1

dηn ∫
1

0

dx1

x1 ∫
x1

0

dx2

x2
…∫

xn−1

0

dxn

xn
Θ(xne−ηn > e−L)

angular-ordering energy-ordering
kt > kt,cut

ln k?
⌘

lnQ

ln kt,cut

1

2

3

✓1

✓2
✓3

Q � E1 � E2 � E3 � kt,cut

1 � ✓1 � ✓2 � ✓3

Figure 1: Representation of the nested gluon-emission pattern, strongly-ordered in both energies

and angles, which constitutes the all-order DL contribution.

the initial hard parton xi, i.e. xi = 2Ei/Q =
Q

ji
zj with zj the energy fraction of each emission

with respect to the previous one, and the product running over all previous emissions. We do so

since xi is the strongly ordered variable. We can therefore write the all-orders expression for the

Lund multiplicity at DL accuracy as:

hN
(Lund)
i

iDL = 1 +
Ci

CA

1X

n=1

↵̄
n

Z
1

0
d⌘1

Z
1

⌘1

d⌘2· · ·

Z
1

⌘n�1

d⌘n

Z 1

0

dx1

x1

Z
x1

0

dx2

x2
· · ·

Z
xn�1

0

dxn

xn

⇥(xne
�⌘n > e

�L) (3.9)

= 1 +
Ci

CA

1X

n=1

↵̄
n

Z
L

0
d⌘n

⌘
n�1
n

(n � 1)!

(L � ⌘n)n

n!
= 1 +

Ci

CA

1X

n=1

(↵̄L
2)n

(2n)!
.

The series can easily be summed to get

N
(DL)
i

⌘ hN
(Lund)
i

iDL = 1 +
Ci

CA

(cosh ⌫ � 1) , (3.10)

where we introduce the following notations which will be helpful throughout this paper:

⌫ =
p

↵̄L2 =

r
2CA⇠

⇡
=

r
2CA↵sL

2

⇡
. (3.11)

Eq. (3.10) is in agreement with earlier results in the literature [23]. In this soft-and-collinear

limit, both hard legs in a Z ! qq̄ or H ! gg process are independent of one another. Thus, the

average Lund multiplicity is hN
DL
Z

i = 2N
(DL)
q and hN

DL
H

i = 2N
(DL)
g , respectively.

N
(DL)
i

is the total number of Lund declusterings above a fixed kt,cut. In future discussions

we also consider the di↵erential distribution, i.e. the distribution of Lund declusterings at a given

kt, which can be trivially obtained from the cumulative result:

n
(DL)
i

=
dN

(DL)
i

dL
=

Ci

CA

p
↵̄ sinh ⌫. (3.12)

– 8 –

ν = 2αsCAL2/π

⟨N⟩DL = 1 +
Ci

CA
[cosh ν − 1]

(αsL2)n
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13

αsL(αsL2)n

The possible configurations that contribute to        at next-to-double log are⟨N⟩

Running coupling

αs → αs − 2α2
s β0ℓ + %(α3

s )

ℓ ≡ ln(kt /Q)with

Hard-collinear

1
z

→ CF ( 1 − z
z

+ z
2 ) dz

z
dη

Large-angle

pi ⋅ pj

pi ⋅ pk pj ⋅ pk

dϕ
2π

d cos θ

→

kt ∼ kt,cut

αsL(αsL2)n
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The importance of higher logarithmic accuracy

The uncertainty of the theoretical 
prediction at                       is kt,cut = 5 GeV

DL:          NDL:          NNDL:28 % , 10 % , 5 %
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Figure 3: (left) h#Lundi and (right) h#Primary
Lund i are shown as a function of the emission :C requirement, :C ,cut. The

unfolded data are compared with several MC predictions in (a,b) an inclusive ?T bin above 300 GeV, (c,d) a ?T bin
between 500 GeV and 750 GeV and (e,f) a ?T bin between 1250 GeV and 4500 GeV. The h#Lundi distribution is
also compared with an analytic NLO+NNDL+NP prediction with additional non-perturbative corrections, depicted
as a solid line, provided by the authors of Ref. [33]. The total uncertainty on the data and the NLO+NNDL+NP
prediction are indicated as shaded regions. The middle panel shows a ratio of the predictions to the measured data,
and the bottom panel summarizes the various systematic uncertainties in each bin.
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Figure 3: (left) h#Lundi and (right) h#Primary
Lund i are shown as a function of the emission :C requirement, :C ,cut. The

unfolded data are compared with several MC predictions in (a,b) an inclusive ?T bin above 300 GeV, (c,d) a ?T bin
between 500 GeV and 750 GeV and (e,f) a ?T bin between 1250 GeV and 4500 GeV. The h#Lundi distribution is
also compared with an analytic NLO+NNDL+NP prediction with additional non-perturbative corrections, depicted
as a solid line, provided by the authors of Ref. [33]. The total uncertainty on the data and the NLO+NNDL+NP
prediction are indicated as shaded regions. The middle panel shows a ratio of the predictions to the measured data,
and the bottom panel summarizes the various systematic uncertainties in each bin.
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3

non-trivial ⌘̄ dependence in Eq. (2) and the way in which
it connects with the overall event momentum Q. There-
fore we need to generalise Kcmw ! K(�1̃,ab), where the

full K is a function of the kinematics of 1̃ and of the
opening angle of the ab dipole. In the same vein as the
MC@NLO [65] and POWHEG [66, 67] methods and their
MINLO [68, 69] extension, the correct next-to-leading-
order (NLO) normalisation for the emission is given by

K(�1̃,ab) = V (�1̃,ab) +

Z
d�ps

12/1̃|M
(ps)

12/1̃
|
2
��(ps,1)

1̃
. (5)

Here, V is the exact QCD 1-loop contribution for a
single soft emission, renormalised at scale µ = kt,1̃;

d�ps
12/1̃

|M
(ps)

12/1̃
|
2 is the product of shower phase space and

matrix element associated with real 1̃ ! 12 branching,

including double-soft corrections; and �(ps,1)

1̃
is the co-

e�cient of ↵s/(2⇡) in the fixed-order expansion of the
shower Sudakov factor. To aid in the evaluation of
K(�1̃,ab) we make use of two main elements: firstly, in
the soft-collinear limit,K(�1̃,ab) ! Kcmw; secondly, both

V (�1̃,ab) and �(ps,1)

1̃
are independent of the rapidity of

1̃, as long as 1̃ is soft and (for �(ps,1)

1̃
) kept at some fixed

value of the evolution scale. We can therefore reformulate
Eq. (5) as K = Kcmw +�K, with

�K =

Z

r
d�(ps)

12/1̃
|M

(ps)

12/1̃
|
2
�

Z

rsc

d�(ps)

12/1̃sc
|M

(ps)

12/1̃sc
|
2
. (6)

In the second term, 1̃sc is at the same shower scale v

as 1̃, but shifted by a constant in rapidity with respect
to ab so as to be in the soft-collinear region, wherein
K(�1̃sc,ab

) ! Kcmw. The labels r and rsc indicate a reg-
ularisation of the phase space, which should be equivalent
between the two terms. Specifically, we separate MDS in
Eq. (3) into correlated and uncorrelated parts, respec-
tively those involving CFCA versus C2

F colour factors for
the q̄ggq matrix element. For the correlated part, we cut
on the relative transverse momentum of 1 and 2, while for
the uncorrelated part, we cut on the transverse momen-
tum with respect to the ab dipole and impose |�y12| <

�ymax. In practice we tabulate �K as a function of
✓ab, ⌘̄1̃, and �1̃, though one could also envisage on-the-
fly evaluation. We incorporate �K in Eq. (2), through
a multiplicative factor 1 + tanh[↵s

2⇡ �K(1� ak)(1� bk)].
This form keeps the correction positive and bounded. It
also leaves the shower unmodified in the hard-collinear
region.

We study the above approach with several variants of
the PanGlobal shower. All have been adapted relative
to Ref. [2] with regards to the precise way in which they
restore momentum conservation after the map of Eq. (1).
This was motivated by the discovery that in higher-order
shower configurations involving three similarly collinear
hard particles, the original recoil prescription could lead
to unwanted long-distance kinematic side e↵ects. Details
are given in the supplemental material [60], § 1, and tests
were carried out using the method of Ref. [70].

FIG. 2. The result of Eq. (7) for three variants of the Pan-
Global shower without double-soft corrections (left) and with
them (right). The latter are consistent with NNDL accuracy.
The bands represent statistical errors in an ↵s ! 0 extrapo-
lation based on four finite ↵s values.

We will consider three variants of the PanGlobal
shower: two choices of the ordering variable, ⇠ kt✓

� with
� = 0 (PG�=0) and 1/2 (PG�=1/2), and also a “split-
dipole-frame” � = 0 variant (PGsdf

�=0), which replaces

f(±⌘̄) ! f(±⌘) in Eq. (2), with ⌘ = 1
2 log ak/bk. The

⌘ = 0 transition region bisects the dipole in its rest frame
rather than the event frame. This makes the 1̃ ! 12
branching independent of the 1̃ rapidity in the dipole
frame, resulting in �K = 0. Illustrative plots of �K

and its impact are given in Ref. [60], § 2 c. For the three
shower variants, the overhead factors ⌦ associated with
Eq. (3) are respectively taken equal to 3.1, 20 and 4,
independently of the dipole kinematics.
All results, both with and without double-soft correc-

tions, include NLO 2-jet matching [71], which is required
for the NNDL/NSL accuracy that we aim for. Spin cor-
relations [72, 73] are turned o↵, because we have yet
to integrate them with the double-soft corrections. The
double-soft corrections are implemented at large-Nc, in
such a way as to preserve the full-Nc NLL/NDL accu-
racies obtained in Ref. [74] for global observables and
multiplicities. All events have (positive) unit weight.
To test the enhanced logarithmic accuracy of the

shower, the first observable that we consider is the Lund
subjet multiplicity [43] in e

+
e
�

! qq̄ events. This is
a perturbatively calculable observable that is conceptu-
ally close to the experimentally important total charged-
particle multiplicity. For a centre-of-mass energy Q and
a transverse momentum cuto↵ kt, the subjet multiplicity
has a double-logarithmic resummation structure ↵

n
sL

2n

with L = ln kt/Q. The PanGlobal showers already re-
produce terms up to NDL ↵

n
sL

2n�1. The addition of the
double-soft corrections and matching [71] is expected to
bring NNDL accuracy, ↵n

sL
2n�2. To test this, in Fig. 2,

we examine

lim
↵s!0

Nps �Nnndl

↵sNdl

����
fixed ↵sL

2

, (7)

PanGlobal’s NNDL accuracy test
w/ double-softno double-soft

[Ferrario Ravasio et al. PRL 131 (2023) 16, 161906]

NNDL = 0
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New application of resummation 
calculations: test of parton showers

Agreement with data within 10%

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.131.161906
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Primary Lund plane Secondary Lund jet plane

If primary emission is chosen
judiciously, can obtain gluon-rich jet
sample at a lower pT

Average map for mixture
of quark/gluon jets at high-pT

12

𝜌sec.(kT,ΔR)LO = 2/π CA𝛼S(kT)
𝜌prim.(kT,ΔR)LO = 2/π (fqCF+fgCA)𝛼S(kT)

“fixing” Casimir factor



New ideas: beyond the primary Lund plane

Potential of secondary Lund plane as a gluon-enriched sample
12

[Baldenegro, Soyez, ASO, in preparation]

PRELIMINARY

150 < pT,softer jet < 250 GeV

gluon-enriched

1 < ΔRjj < 1.2

pT,harder jet > 700 GeV

Quark/gluon mixturerecoil jet radiation 
treated inclusively


