

UNIVERSIDAD DE GRANADA

Jets in the Lund plane

Alba Soto Ontoso CERN, 18th September, 2024 LHC-EW WG: Jets and EW bosons

Definition of Lund-based observables

Anti-kt jet

Hemisphere in e^{+e-}

…

Unwinding the parton shower history

Definition of Lund-based observables

Anti-kt jet

Hemisphere in e^{+e-}

…

ln(R) rooms and resources are all the second to the second second and resources are all the second second and

Our goal is to design and study an observable to probe

The Lund-plane: central tool for pQCD

between the true form of the observable and the parametrisation is just a non-zero

Two examples of Lund-based observables calculable in pQCD

The primary Lund-plane density: resummation structure

In the soft-and-collinear limit, the Lund plane density is simply given by

 $ρ$ _{LO}($θ$,

$$
k_t) = \frac{2\alpha_s C_i}{\pi}
$$

Beyond LO/LL, two sources of logarithmic enhancements appear

α_s^{n+1} $\int_{s}^{n+1} \ln^{m} \theta \ln^{n-m} \frac{p_t}{l_t}$

$$
\frac{p_t}{k_t} \quad \text{with} \quad 0 \le m \le n
$$

So far, the full set of single-logarithmic corrections has been computed

[Lifson, Salam, Soyez JHEP 10 (2020) 170]

The primary Lund-plane density: NLL resummation

The primary Lund-plane density: NLL resummation

The primary Lund-plane density: NLL resummation

Running coupling corrections

 $2\alpha_s^{1\ell}$

[Ellis, Marchesini, Webber. Nucl.Phys.B 286 (1987) 643]

1

Hard-collinear corrections $\alpha_s^{n+1} \ln^n \theta$

Soft, large-angle corrections α_s^{n+1}

 $\rho_{\rm rc}(\theta, k_t) =$

The primary Lund-plane density: theory-to-data

Lund multiplicity: DL resummation $(\alpha_s L^2)$) *n*

$$
\langle N \rangle_{\text{DL}} = 1 + \frac{C_i}{C_A} \sum_{n=1}^{\infty} \bar{\alpha}^n \underbrace{\int_0^{\infty} d\eta_1 \int_{\eta_1}^{\infty} d\eta_2 \dots \int_{\eta_{n-1}}^{\infty} d\eta_n \int_0^1 \frac{dx_1}{x_1} \int_0^{x_1} \frac{dx_2}{x_2} \dots \int_0^{x_{n-1}} \frac{dx_n}{x_n} \underbrace{\Theta(x_n e^{-\eta_n} > e^{-L})}_{K_t > k_{t,\text{cut}}}
$$
\n
$$
\text{angular-ordering}
$$
\n
$$
\frac{R_i > k_{t,\text{cut}}}{K_t > k_{t,\text{cut}}}
$$
\n
$$
\frac{Q \gg E_1 \gg E_2 \gg E_3 \gg k_{t,\text{cut}}}{1 \gg \theta_1 \gg \theta_2 \gg \theta_3}
$$

 $\ln k_{t,\mathrm{cut}}$

$$
\langle N \rangle_{\text{DL}} = 1 + \frac{C_i}{C_A} \left[\cosh \nu - 1 \right]
$$

$$
\nu = \sqrt{2\alpha_s C_A L^2/\pi}
$$

Running coupling

Lund multiplicity: NDL resummation $\alpha_s L$ α *I* 2γ $\alpha_s L(\alpha_s L^2)$) *n*

$$
\alpha_s \to \alpha_s - 2\alpha_s^2 \beta_0 \ell + \mathcal{O}(\alpha_s^3)
$$

with $\ell \equiv \ln(k_t/Q)$

$$
\frac{1}{z} \to C_F \left(\frac{1}{z} \right)
$$

The importance of higher logarithmic accuracy

The uncertainty of the theoretical prediction at $k_{t, \text{cut}} = 5$ GeV is DL: 28 %, NDL: 10 %, NNDL: 5 %

New ideas: beyond the primary Lund plane

Average map for mixture of quark/gluon jets at high-p-

Primary Lund plane Secondary Lund jet plane

If primary emission is chosen judiciously, can obtain gluon-rich jet sample at a lower p_T

New ideas: beyond the primary Lund plane

Potential of secondary Lund plane as a gluon-enriched sample

[Baldenegro, Soyez, ASO, in preparation]

