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Theoretical challenge

• Non-zero chemical potential (QCD phase diagram) 

• Real time dynamics 

→ heavy ion collisions, scattering quenches 

From: 10.1051/epjconf/20159700025

Cartoon of the time evolution of an ultra-relativistic heavy-ion collision

Motivation

http://dx.doi.org/10.1051/epjconf/20159700025
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Theoretical challenge

• Non-zero chemical potential 

• Real time dynamics 

→ heavy ion collisions, scattering quenches 

From: 10.1051/epjconf/20159700025

Cartoon of the time evolution of an ultra-relativistic heavy-ion collision

Motivation

Computing challenge for High-Lumi LHC 

• Simulation and analysis

→ need: new technology, algorithms and methods 

From HL-LHC Projections - ATLAS Software and Computing HL-LHC Roadmap

http://dx.doi.org/10.1051/epjconf/20159700025


Fundamental motivation

Utilise information and correlations inherent in HEP data.

Exploit “quantum remnants” in data.

entanglement [1703.02989] spin correlations [1907.03729]

interference [2110.10112] Bell inequalities [2102.11883, 2203.05582]
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Quantum Machine Learning Challenge 

CERN examples

Discussion
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Quantum Machine Learning Challenge 

CERN examples

Discussion



Model Space and Learning Algorithms 

• Choose type of model

– Each set of parameters is a point in space of models 

• Need to find the best model parameters for loss 

• Learning is like a search through space of models, 

guided by the data 

• Various possibilities

– Exhaustive search

– Closed for solutions (rare) 

– Iterative optimization 
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Machine Learning + QC 

Unsupervised ML

Unlabeled data.

ML finds patterns in your data.

Indirect evaluation.

Supervised ML

Labeled data, i.e., data with 
defined output.

A model is trained giving this 
data and you have direct 
evaluation.

Reinforcement

Learning

Supervised

Learning

Unsupervised

Learning

regression

classification

Generative model

clustering

anomaly detec
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Quantum Machine Learning 

Unsupervised ML

Supervised ML

Reinforcement

Learning

Supervised

Learning

Unsupervised

Learning
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e.g., Quantum Classifier: aims 
to learn input-output relation
of labeled dataset 𝑓: 𝑥𝑖𝑛 ↦
𝑥𝑜𝑢𝑡 by optimizing quantum 
network

e.g., Quantum Generative 
Models: aims to learn the 
underlying probability 
distribution 𝜋(𝑦) of a given 
data set and generates 
samples from it using 
quantum network

→ See Elias’ talk ☺
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Quantum Machine Learning 

Reinforcement

Learning

Supervised

Learning

Unsupervised

Learning

10

CC CQ

QQQC

Type of algorithm

T
y
p
e

 o
f 
d
a

ta

M. Grossi - CERN QTI



Quantum Machine Learning (QML) 
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QML models

S.Jerbi at al., Quantum Machine Learning Beyond Kernel Methods – Nature Communications 14, 517 (2023)
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QML models

S.Jerbi at al., Quantum Machine Learning Beyond Kernel Methods – Nature Communications 14, 517 (2023)
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QML models

S.Jerbi at al., Quantum Machine Learning Beyond Kernel Methods – Nature Communications 14, 517 (2023)
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QML Pipeline

Classical Data
Quantum Data

Signal/Background

Paramagnetic/Ferromagnetic

training

prediction
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Variational algorithms - EXPLICIT
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1-A. Bogatskiy et al. "Lorentz group equivariant neural network for particle physics." PMLR, 2020

2-J. Meyer et al “Exploiting symmetry in variational quantum machine learning“, PRX Quantum 4, 010328 (2023)

3-S.Jerbi at all., Quantum Machine Learning Beyond Kernel Methods Nature Communications 14, 517 (2023)

QML models implementations for NISQ

• Flexible parametric ansatz: design can 
leverage data symmetries1,2

• Can use gradient-free methods or
stochastic gradient-descent

• Data Embedding can be learned

• Better generalization2,3

https://github.com/fizisist/LorentzGroupNetwork

A unitary representation of a symmetry 

group S can arise from data symmetries 

when the data points are suitably

encoded or alternatively from physical

considerations of a variational problem2. 
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Variational Quantum Algorithms

ℓ𝜽 𝜌, 𝑂 = Tr 𝜌𝑈† 𝜽 𝑂𝑈 𝜽
The Hilbert space can serve as an exponentially big feature space

Variational Quantum Algorithms have many similarities with classical machine learning.

To devise a first quantum machine learning model, few details need to be added, namely data 
encoding and cost data dependence. 

The loss/cost function is obtained by classically post-processing the measurement results, 

including data dependence. 
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Variational Quantum Algorithms – the Challenge

1. Efficient data handling and data embedding

2. Ansatz choice 

Can we find the most suitable ansatz for the given problem? 
How well can we survey the Hilbert space (SYMMETRY?!)?

3. Trainability

Can the parameters be updated? 

4. Classical Simulability

Are the quantum simulations classically simulable? 
No need for a quantum computer!?

Just because we can simulate a loss, does not mean it is practical to do so!
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What about noise? Non-unitary QML

Single qubit unitary operation
Entangling operation Single qubit unitary operation

Generic quantum channel, which includes 

both entangling operations and noise 

Add noise 

The presence of noise is often overlooked in such analyses 

→ Symmetry breaking in geometric quantum machine learning in the presence of noise 

[MG et al. PRX Quantum 5, 030314]

→ Estimates of loss function concentration in noisy parametrized quantum circuits
[G. Crognaletti., GM, et al – arXiv:2410.01893]

19
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https://arxiv.org/abs/2402.09524v1


M. Grossi - CERN QTI 20

Quantum Machine Learning Challenge 

CERN examples

Discussion



Theory

Data 
Generation

Feature 
Extraction

Data 
Analysis
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HEP Pipeline
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Theory

Data 
acquisition

Feature 
extraction

Data 
Analysis

phase-space cuts 

Agliardi, Grossi, Pellen, Prati "Quantum integration of elementary 
particle processes."  https://doi.org/10.1016/j.physletb.2022.137228

𝜎 =
1

𝐹
න𝑑Φ 𝑀 2Θ Φ − Φ𝑐

probability distributions/

matrix element 

integrandphase-space factor

https://doi.org/10.1016/j.physletb.2022.137228
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Theory

Data 
acquisition

Feature 
extraction

Data 
Analysis

PhysRevD.110.074031

Loop Feynman integral (Bubble)

Good result (1% error) on HW

PhysRevD.110.074031 - Martinez de Lejarza, GM., et al.

Loop Feynman integration on a quantum computer
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Theory

Data 
Generation

Feature 
extraction

Data 
Analysis

v

MG, Y. Haddad, V. Croft, C. Tusyz in preparation

• Generative Adversarial Networks : two networks competing, 

generator produces fake data, and a discriminator distinguishes 

between real and fake data

• Quantum GAN (QGAN) replaces the generator network by a 

parameterised quantum circuit

• How can quantum simulators model particle interactions described by 

SOTA hadronization model?

• Can quantum generative model provide better results in terms of more 

accurate physics description?

• Can we offer an alternative to the traditional MC or classic GM with QC? 
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Theory

Data 
Generation

Feature 
extraction

Data 
Analysis

v

MG, Y. Haddad, V. Croft, C. Tusyz in preparation

Style-based Hybrid QGAN for hadronization

The Quantum GAN captures the distributions of the first and second 

emissions, reproduce their dependence with the jet scale 
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Theory

Data 
acquisition

Feature 
extraction

Data 
Analysis

Where is NEW PHYSICS?
Are we using the right data?
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Theory

Data 
acquisition

Feature 
extraction

Data 
Analysis

Quantum Anomaly Detection
Belis V., GM, et al – COMMSPHYS-23-1149C

• Simulate QCD multi-jets at the LHC

• Build jet from 100 highest pt particles

ℝ300 → ℝℓ , ℓ = 4, 8,16

https://arxiv.org/abs/2402.09524v1
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Theory

Data 
acquisition

Feature 
extraction

Data 
Analysis

Quantum Anomaly Detection
Belis V., GM, et al – COMMSPHYS-23-1149C

No entanglement

More expressive

• Importance of intrinsically quantum 

properties of the feature map 

• Up to 14 times the performance of the 

classical model for 24 qubits! 

https://arxiv.org/abs/2402.09524v1
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Quantum Machine Learning Challenge 

CERN examples

Discussion



QC research directions in HEP

30

Concrete challenges

• What are the most promising applications?

• How to define performance metrics and validate results? 

Experimental data has high dimensionality

• Can we train Quantum Machine Learning algorithms  

effectively?

Experimental data is shaped by physics laws

• Can we leverage them to build better algorithms? 

• Can we train the loss on a classical device, and sample on 

quantum (GENERATIVE MODELs)

• Quantum Error Mitigation is the way, waiting for scalable 

ERROR CORRECTION

QC4HEP working group
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Variational Quantum Algorithms – Summary

Perspective: Challenges and opportunities in quantum machine learning, M. Cerezo, et al., Nature Comp. Sc., 2, 567 (2022).

• VQA can’t be trusted any more than classical machine learning

• VQA requires linear algebra and python

• Some success has been achieved for small problem sizes (N< 30 qubits)

• We do not yet have the hardware required to test these algorithms at scale
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Quantum Algorithms – Summary

Conventional quantum algorithms 

 → come with provable guarantees

 → require significant knowledge of quantum information, group theory, physics, etc.
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μ

The Physics model: Axial Next Nearest Neighbor Ising (ANNNI)

Senk, Physics Reports, 170, 4 (1988)

Integrable only for:

●                        (x-axis)        

●                         (y-axis)
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QML for quantum data: drawing phase diagrams

1. Supervised classification of the ground state 

2. Quantum states are exponentially hard to save 

classically. 

• Generate quantum states with VQE

3. Bottleneck from access to classical training labels 

• Train in integrable subregions

• Generalize to a full model

Monaco, at al. Physical Review B 107.8 (2023): L081105 

Quantum data 

QCNN output using 12 qubits:95% accuracy

Quantum classifier 

Classical 

label
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QML using TN
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- Unsupervise: Quantum Autoencoder to 

learn an effective unitary operation capable 

of compressing all the information 

- All anomaly detection models were trained 

to compress the point

 (κ, h) = (0, 0) of the Hamiltonian

Exploring the Phase Diagram of the quantum one-dimensional ANNNI model

https://arxiv.org/abs/2402.11022

- Training: single state selected to 

achieve compression

- Cost is assigned to compressed 

state allowing the outline of all 

phases

loss function

https://arxiv.org/abs/2402.11022


QML using TN
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learn an effective unitary operation capable 

of compressing all the information 
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 (κ, h) = (0, 0) of the Hamiltonian
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- Training: single state selected to 

achieve compression

- Cost is assigned to compressed 

state allowing the outline of all 

phases

loss function
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Conclusion

• Complexity & learning theory mostly gives us insights into worst-case behavior

→ ML: Learning theory predicted deep neural networks to not be trainable

Benchmarking can help us to understand the behavior on specific instances

• We need to make a comparison of computational cost - may lead to poly advantages!

• Change the goal: quantum advantage will be unlikely in many cases BUT we can identify promising paths for 

hybrid computational advantages (TN + QML?)

• We can train the loss on a classical device, and sample on quantum (GENERATIVE MODELs)

→ larger devices for high-quality data?

• What’s the role of data?

• Community goal is bridging the gap between near-term and fault-tolerant quantum machine learning
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QT4HEP 2025 -  save the date
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