Quantum Computing for High energy physics: CERN perspective

Workshop on Tensor Networks and (Quantum) Machine Learning for High-Energy Physics

Michele Grossi, PhD

Hybrid Quantum Computing Infrastructures and Algorithms Coordinator

Motivation

Theoretical challenge

- Non-zero chemical potential (QCD phase diagram)
- Real time dynamics
 - \rightarrow heavy ion collisions, scattering quenches

From: 10.1051/epjconf/20159700025

Cartoon of the time evolution of an ultra-relativistic heavy-ion collision

Motivation

Theoretical challenge

- Non-zero chemical potential
- Real time dynamics

 \rightarrow heavy ion collisions, scattering quenches

From: 10.1051/epjconf/20159700025

Cartoon of the time evolution of an ultra-relativistic heavy-ion collision

Computing challenge for High-Lumi LHC

- Simulation and analysis
 - \rightarrow need: new technology, algorithms and methods

From HL-LHC Projections - ATLAS Software and Computing HL-LHC Roadmap

Fundamental motivation

Utilise information and correlations inherent in HEP data.

Exploit "quantum remnants" in data.

Quantum Machine Learning Challenge CERN examples Discussion

Quantum Machine Learning Challenge

CERN examples

Discussion

Machine Learning + QC

Quantum Machine Learning

Quantum Machine Learning

Quantum Machine Learning (QML)

a) Explicit quantum model:

$$f_{\boldsymbol{\theta}}(\boldsymbol{x}) = \operatorname{Tr}[\rho(\boldsymbol{x})O_{\boldsymbol{\theta}}]$$

 $\rho(\boldsymbol{x}) = |\psi(\boldsymbol{x})\rangle\langle\psi(\boldsymbol{x})|$ $O_{\boldsymbol{\theta}} = V^{\dagger}(\boldsymbol{\theta})OV(\boldsymbol{\theta})$

A linear model with a restricted \boldsymbol{w}

S.Jerbi at al., Quantum Machine Learning Beyond Kernel Methods – Nature Communications 14, 517 (2023)

QML models

a) Explicit quantum model: $f_{\theta}(x) = \operatorname{Tr}[\rho(x)O_{\theta}] \qquad \begin{array}{l} \rho(x) = |\psi(x)\rangle\langle\psi(x)| \\ O_{\theta} = V^{\dagger}(\theta)OV(\theta) \\ \hline A \text{ linear model with a restricted } w \\ \end{array}$ **b)** Implicit quantum model: $f_{\alpha}(x) = \operatorname{Tr}[\rho(x)O_{\alpha,\mathcal{D}}] \qquad O_{\alpha,\mathcal{D}} = \sum_{m=1}^{M} \alpha_{m}\rho(x^{(m)}) \\ \hline A \text{ kernel linear model} \\ \end{array}$

S.Jerbi at al., Quantum Machine Learning Beyond Kernel Methods – Nature Communications 14, 517 (2023)

QML models

a) Explicit quantum model: $f_{\theta}(x) = \operatorname{Tr}[\rho(x)O_{\theta}] \qquad \begin{array}{l} \rho(x) = |\psi(x)\rangle\langle\psi(x)| \\ O_{\theta} = V^{\dagger}(\theta)OV(\theta) \\ \hline A \text{ linear model with a restricted } w \\ \end{array}$ b) Implicit quantum model: $f_{\alpha}(x) = \operatorname{Tr}[\rho(x)O_{\alpha,\mathcal{D}}] \qquad O_{\alpha,\mathcal{D}} = \sum_{m=1}^{M} \alpha_{m}\rho(x^{(m)}) \\ \hline A \text{ kernel linear model} \\ \hline c) \text{ Data re-uploading model:} \\ f_{\theta}(x) = \operatorname{Tr}[\rho(x,\theta)O_{\theta}] \\ \end{array}$

S.Jerbi at al., Quantum Machine Learning Beyond Kernel Methods – Nature Communications 14, 517 (2023)

QML models implementations for NISQ

Variational algorithms - EXPLICIT

- Flexible parametric ansatz: design can leverage data symmetries^{1,2}
- Can use gradient-free methods or stochastic gradient-descent
- Data Embedding can be learned
- Better generalization^{2,3}

https://github.com/fizisist/LorentzGroupNetwork

A unitary representation of a symmetry group S can arise from data symmetries when the data points are suitably encoded or alternatively from physical considerations of a variational problem².

1-A. Bogatskiy et al. "Lorentz group equivariant neural network for particle physics." PMLR, 2020
 2-J. Meyer et al "Exploiting symmetry in variational quantum machine learning", PRX Quantum 4, 010328 (2023)
 3-S.Jerbi at all., Quantum Machine Learning Beyond Kernel Methods Nature Communications 14, 517 (2023)

Symmetry

Encoding

OUANTUM

TECHNOLOGY

Equivariant gateset

Variational Quantum Algorithms

Variational Quantum Algorithms have many similarities with classical machine learning. To devise a first quantum machine learning model, few details need to be added, namely **data encoding** and **cost data dependence.**

The loss/cost function is obtained by classically post-processing the measurement results, including data dependence.

The Hilbert space can serve as an *exponentially big feature space*

Variational Quantum Algorithms – the Challenge

1. Efficient data handling and data embedding

2. Ansatz choice

Can we find the most suitable ansatz for the given problem? How well can we survey the Hilbert space (SYMMETRY?!)?

3. Trainability

Can the parameters be updated?

4. Classical Simulability

DUANTUM

Are the quantum simulations classically simulable? No need for a quantum computer!?

Just because we can simulate a loss, does not mean it is practical to do so!

Accessible space

What about noise? Non-unitary QML

The presence of noise is often overlooked in such analyses

→ Symmetry breaking in geometric quantum machine learning in the presence of noise

[MG et al. PRX Quantum 5, 030314]

→ Estimates of loss function concentration in noisy parametrized quantum circuits [G. Crognaletti., GM, et al – arXiv:2410.01893]

Quantum Machine Learning Challenge

CERN examples

Discussion

Agliardi, Grossi, Pellen, Prati "Quantum integration of elementary particle processes." <u>https://doi.org/10.1016/j.physletb.2022.137228</u>

- Generative Adversarial Networks : two networks competing, generator produces fake data, and a discriminator distinguishes between real and fake data
- Quantum GAN (QGAN) replaces the generator network by a parameterised quantum circuit

Data Generation

- How can quantum simulators model particle interactions described by SOTA hadronization model?
- Can quantum generative model provide better results in terms of more accurate physics description?
- Can we offer an alternative to the traditional MC or classic GM with QC?

OUANTUM

TECHNOLOGY

• Data: anti- k_T (R = 0.4) jets generated with Pythia8 ($p_T > 30$ GeV)

• Each jet constitent represented by two features:

- Momentum fraction $z_i = p_T^i / p_T^{jet}$
- Angle with reference to the jet axis $heta_i = \Delta R_i/R$
- 1 qubit = 1 feature: $\hat{x} = \{ \langle \sigma_Z^0 \rangle, \langle \sigma_Z^1 \rangle, \dots, \langle \sigma_Z^n \rangle \}$
- Style-based approach ${}^{(*)}$: the noise is inserted in every gate: $\phi_i \to \phi_i = w \cdot z + b$
 - The noise z, is sampled from $\mathscr{U}(0,1)$
- Jet p_T included as condition via R_y rotations in styled-base approach: $c \rightarrow c = w \cdot c + b$

Style-based Hybrid QGAN for hadronization

Data Generation

The Quantum GAN captures the distributions of the first and second emissions, reproduce their dependence with the jet scale

MG, Y. Haddad, V. Croft, C. Tusyz in preparation

Where is NEW PHYSICS? Are we using the right data?

CMS,

p_{T2}

Jet 1, pt: 70.0 GeV

CERN

Quantum Anomaly Detection

Quantum Anomaly Detection

Belis V., GM, et al – COMMSPHYS-23-1149C

QUANTUM

TECHNOLOGY INITIATIVE

Importance of intrinsically quantum properties of the feature map

• Up to **14 times** the performance of the classical model for 24 qubits!

10²

10¹

10⁰

0.0

AUC

Quantum

0.2

Classical

0.4

99.54± 0.05 | 99.34± 0.06

94.70± 0.11 | 93.29± 0.13

.62± 0.52 | 45.60± 0.45

Unsupervised kernel machine

0.8

1.0

TPR

0.6

Quantum Machine Learning Challenge

CERN examples

Discussion

QC research directions in HEP

Concrete challenges

- What are the most promising applications?
- How to **define performance metrics** and validate results?

Experimental data has high dimensionality

 Can we train Quantum Machine Learning algorithms effectively?

Experimental data is shaped by physics laws

- Can we leverage them to build better algorithms?
- Can we train the loss on a classical device, and sample on quantum (GENERATIVE MODELs)
- Quantum Error Mitigation is the way, waiting for scalable ERROR CORRECTION

PRX QUANTUM 5, 037001 (2024)

Quantum Computing for High-Energy Physics: State of the Art and Challenges

Alberto Di Meglio⁹,^{1,*} Karl Jansen,^{2,3,†} Ivano Tavernelli,^{4,‡} Constantia Alexandrou⁹,^{3,5} Srinivasan Arunachalam,⁶ Christian W. Bauer,⁷ Kerstin Borras⁶,^{8,9} Stefano Carrazza⁶,^{1,10} Arianna Crippa[®],^{2,11} Vincent Croft[®],¹² Roland de Putter,⁶ Andrea Delgado[®],¹³ Vedran Dunjko[®],¹² Daniel J. Egger[®],⁴ Elias Fernández-Combarro[®],¹⁴ Elina Fuchs[®],^{1,15,16} Lena Funcke[®],¹⁷ Daniel González-Cuadra⁰, ^{18,19} Michele Grossi⁰, ¹ Jad C. Halimeh⁰, ^{20,21} Zoë Holmes, ²² Stefan Kühn[®]² Denis Lacroix[®]²³ Randy Lewis[®]²⁴ Donatella Lucchesi[®]^{1,25} Miriam Lucio Martinez,^{26,27} Federico Meloni⁹,⁸ Antonio Mezzacapo,⁶ Simone Montangero⁹,^{1,25} Lento Nagano^{,28} Vincent R. Pascuzzi^{,6} Voica Radescu,²⁹ Enrique Rico Ortega^{,30,31,32,33} Alessandro Roggero^{1,34,35} Julian Schuhmacher^{1,4} Joao Seixas, ^{36,37,38} Pietro Silvi^{1,25} Panagiotis Spentzouris[®],³⁹ Francesco Tacchino[®],⁴ Kristan Temme,⁶ Koji Terashi[®],²⁸ Jordi Tura[®],^{12,40} Cenk Tüysüz^{2,11} Sofia Vallecorsa¹ Uwe-Jens Wiese,⁴¹ Shinjae Yoo⁴³,⁴² and Jinglei Zhang^{43,44} European Organization for Nuclear Research (CERN), 1211 Geneva, Switzerland ²CQTA, Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany ³Computation-based Science and Technology Research Center, The Cyprus Institute, 20 Konstantinou Kavafi Street, CY-2121 Nicosia, Cyprus ⁴ IBM Research Europe — Zurich, 8803 Rüschlikon, Switzerland ⁵ Department of Physics, University of Cyprus, PO Box 20537, CY-1678 Nicosia, Cyprus ⁶IBM Quantum, IBM T.J. Watson Research Center, Yorktown Heights, NY 10598, USA ⁷Physics Division Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Mailstop 50A5104, Berkeley, California, USA ⁸ Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, 22607 Hamburg, Germany ⁹ RWTH Aachen University, Templergraben 55, 52062 Aachen, Germany ¹⁰ TIF Lab, Dipartimento di Fisica, Università degli Studi di Milano and INFN Sezione di Milano, Milan, Italy ¹¹ Institut für Physik, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany (aOa^L) Applied Ouantum Algorithms – Leiden, Leiden, Netherlands ¹³Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA ¹⁴ Department of Computer Science, Facultad de Ciencias, University of Oviedo, 33007 Asturias, Spain ¹⁵ Institute of Theoretical Physics, Leibniz University Hannover, 30167 Hanover, Germany ¹⁶Physikalisch-Technische Bundesanstalt, 38116 Braunschweig, Germany ¹⁷ Transdisciplinary Research Area "Building Blocks of Matter and Fundamental Interactions" (TRA Matter) and Helmholtz Institute for Radiation and Nuclear Physics (HISKP), University of Bonn, Nußallee 14-16, 53115 Bonn, Germany ¹⁸ Institute for Theoretical Physics, University of Innsbruck, 6020 Innsbruck, Austria ¹⁹ Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, 6020 Innsbruck, Austria ²⁰ Department of Physics and Arnold Sommerfeld Center for Theoretical Physics, Ludwig-Maximilians-Universität München, Munich, Germany ²¹ Munich Center for Quantum Science and Technology, Munich, Germany ²² Institute of Physics, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland ¹³ CNRS/IN2P3, IJCLab, Paris-Saclay University, 91405 Orsay, France ²⁴ Department of Physics and Astronomy, York University, Toronto, Ontario M3J 1P3, Canada ²⁵ INFN—Sezione di Padova, Via Marzolo 8, 35131 Padua, Italy ²⁶Nikhef—National Institute for Subatomic Physics, Science Park 105, 1098 XG Amsterdam, Netherlands

*Contact author: alberto.di.meglio@cern.ch †Contact author: karl.jansen@desy.de ‡Contact author: ita@zurich.ibm.com

Variational Quantum Algorithms – Summary

- VQA can't be trusted any more than classical machine learning
- VQA requires linear algebra and python
- Some success has been achieved for small problem sizes (N< 30 qubits)
- We do not yet have the hardware required to test these algorithms at scale

Perspective: Challenges and opportunities in quantum machine learning, M. Cerezo, et al., Nature Comp. Sc., 2, 567 (2022).

Quantum Algorithms – Summary

Conventional quantum algorithms

- \rightarrow come with <u>provable guarantees</u>
- \rightarrow require significant knowledge of quantum information, group theory, physics, etc.

	Determ. machine (worst case)	Quantum computer
Deutsch	2	1
Deutsch–Jozsa	$2^{n}/2 + 1$	1
Bernstein–Vazirani	n	1
Grover	$2^{n} - 1$	$O(\sqrt{2^n})$
Simon	$2^{n}/2 + 1$	O(n)
Period finding	O(r)	O(1)

Query complexity: classical versus quantum

The Physics model: Axial Next Nearest Neighbor Ising (ANNNI)

VITIATIVE

QML for quantum data: drawing phase diagrams

- 1. Supervised classification of the ground state
- 2. Quantum states are **exponentially hard to save** classically.
 - Generate quantum states with VQE
- 3. Bottleneck from access to classical training labels
 - Train in integrable subregions
 - Generalize to a full model

Monaco, at al. Physical Review B 107.8 (2023): L081105

34

QML using TN

- Unsupervise: Quantum Autoencoder to learn an effective unitary operation capable of compressing all the information
- All anomaly detection models were trained to compress the point (κ, h) = (0, 0) of the Hamiltonian
- Training: single state selected to achieve compression
- Cost is assigned to compressed state allowing the outline of all phases

$$\mathcal{C} = rac{1}{2} \sum_{j \in q_T} (1 - \left\langle \sigma_j^z \right\rangle),$$

loss function

Exploring the Phase Diagram of the quantum one-dimensional ANNNI model https://arxiv.org/abs/2402.11022

QML using TN

- Unsupervise: Quantum Autoencoder to learn an effective unitary operation capable of compressing all the information
- All anomaly detection models were trained to compress the point (κ, h) = (0, 0) of the Hamiltonian

2.0

1.5

ب 1.0

0.5

0.0∔ 0.0

- Training: single state selected to achieve compression
- Cost is assigned to compressed state allowing the outline of all phases

$$\mathcal{C} = rac{1}{2} \sum_{j \in q_T} (1 - \left\langle \sigma_j^z
ight
angle),$$

OUANTUM

loss function

Exploring the Phase Diagram of the quantum one-dimensional ANNNI model https://arxiv.org/abs/2402.11022

FIG. 13: Compression Scores C of the AD circuits trained on the $(\kappa, h) = (0, 0)$ point of the ANNNI model phase diagram at different system sizes N: 6 (left), 12 (middle), and 18 (right). The scores are showcased as a function of the interaction strength ratio ($\kappa = -J_2/J_1$) and the external magnetic field ($h = B/J_1$). Lower compression scores indicate better disentanglement of trash qubits from others, as defined by eq. 2.

Conclusion

- Complexity & learning theory mostly gives us insights into worst-case behavior
 - \rightarrow ML: Learning theory predicted deep neural networks to not be trainable

Benchmarking can help us to understand the behavior on specific instances

- We need to make a comparison of **computational cost** may lead to poly advantages!
- Change the goal: quantum advantage will be unlikely in many cases BUT we can identify promising paths for hybrid computational advantages (TN + QML?)
- We can train the loss on a classical device, and sample on quantum (GENERATIVE MODELs)

 \rightarrow larger devices for high-quality data?

- What's the role of data?
- Community goal is bridging the gap between near-term and fault-tolerant quantum machine learning

QT4HEP 2025 - save the date

