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Strong correlations between electrons used by nature and in

new technologies

High Tc superconductors Single molecular magnets (SMM)

Nitrogen fixation Battery technology



Experimental realizations: optical lattices

Numerical simulations: model systems

Atoms (represented as blue spheres) pictured
in a 2D-optical lattice potential

Potential depth of the optical lattice can be tuned.

Periodicity of the optical lattice can be tuned.

Hubbard model: lattice model of interacting
electron system

H = t
∑
⟨i,j⟩,σ

c†i,σcj,σ +
U

2

∑
σ ̸=σ′

∑
i

ni,σni,σ′

t hopping amplitude
U on-site Coulomb interaction

σ ∈ ↑, ↓ spin index

Classical or quantum computers?



TNS/DMRG provide state-of-the-art results in many fields

H =
∑
ijαβ

Tαβ
ij c†iαcjβ +

1

2

∑
ijklαβγδ

V αβγδ
ijkl c†iαc

†
jβckγclδ + . . . ,

▶ Tij kinetic and on-mode terms, Vijkl two-particle scatterings
▶ We consider usually lattice models in real space (DMRG)
▶ In quantum chemistry modes are electron orbitals (QC-DMRG)
▶ In UHF QC spin-dependent inetractions (UHF-QCDMRG)
▶ In relativistic quantum chemistry modes are spinors (4c-DMRG)
▶ In nuclear problems modes are proton/neutron orbitals (JDMRG)
▶ In k-space modes are momentum eigenstates (k-DMRG)
▶ For particles in confined potential modes → Hermite polynoms
▶ Major aim: to obtain the desired eigenstates of H.

• Symmetries: Abelian and non-Abelian quantum numbers, double
groups, complex integrals, quaternion sym. etc

• # of block states: 1 000 – 60 000. Size of Hilbert space up to 108.

• In ab inito DMRG the CAS size is: 100 electrons on 100 orbitals.

• 1-BRDM and 2-BRDM, finite temperature, dynamics

• Massively parallel implementations CPU/GPU→ exascale on HPC



Tensor product approximation

State vector of a quantum system in the discrete tensor product spaces

|Ψγ⟩ =
q1∑

α1=1

. . .

qd∑
αd=1

U(α1, . . . , αd , γ) |α1⟩ ⊗ · · · ⊗ |αd⟩ ∈
d⊗

i=1

Λi :=
d⊗

i=1

Cqi ,

where span{|αi ⟩ : αi = 1 , . . . , qi} = Λi = Cqi and γ = 1, . . . ,m.

α1 α2 α3 α4 α5 α6 α7 α8 γ

U

dimHd = O(qd) Curse of dimensionality!

We seek to reduce computational
costs by parametrizing the tensors in
some data-sparse representation.

A general tensor network representa-
tion of a tensor of order 5.
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Matrix product state (MPS) representation / DMRG / TT
Affleck, Kennedy, Lieb Tagasaki (87); Fannes, Nachtergale, Werner (91), White (92),

Römmer & Ostlund (94), Vidal (03), Verstraete (04), Oseledets & Tyrtyshnikov, (09)

The tensor U is given elementwise as

U(α1, . . . , αd) =
r1∑

m1=1

. . .

rd−1∑
md−1=1

A1(α1,m1)A2(m1, α2,m2) · · ·Ad(md−1, αd).

We get d component tensors of
order 2 or 3. Scaling: m3. α1
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Calculation of ρij corresponds
to the contraction of the net-
work except at modes i and j .
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von Neumann quantum information entropy, s = −
∑
α λ

2
α lnλ

2
α.

Mutual information, I = si + sj − sij .

Ö.L & Sólyom, (03), Rissler, Noack, White (06)



Nuclear physics: modes are proton/neutron orbitals (JDMRG)

Dukelsky, Papenbrock, Pittel (2003), Ö.L., Veis, Dukelsky, Poves (2015)

H =
∑
α

εαc
†
αcα − 1

2

∑
αβγδ

Vαβγδc
†
αc

†
βcδcγ ,

▶ where c†α and cα creates and annihilates a particle with quantum
numbers α = (n, l , j ,m, τz). j ≥ 1/2, Isospin,

▶ no-core shell models
▶ effective Hamiltonian including parts of 3-body interactions



Nuclear shell DMRG: 64Ge pf+g9/2, α = (n, l , j ,m, τz).
Ö.L, L. Veis, J. Dukelsky, A. Poves (2015)

Particle-hole (phDMRG) J. Dukelsky, S. Pittel, S. Dimitrova, M. Stoitsov (2002)

j-coupling scheme (JDMRG) T. Papenbrock, D.J. Dean (2005), B. Thakur, S.
Pittel, and N. Sandulescu (2008)
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The mutual information matrix
elements obtained with DMRG for
64Ge in the pf+g9/2-shell. on a
ladder topology with time-reversed
pairs in the rungs.

Circles and diamonds label proton
and neutron orbitals respectively,
and sites are denoted by l , j ,m with
+m outside the ladder and −m in-
side.

The mutual information is approximately equal for the p1/2, p3/2 and
f5/2orbits, and independent of their jz projections, due to strong T=1
proton-protonand neutron-neutron pairing coherence.

Proton-neutron T=1 pairing correlations between time reversed and
charge conjugated states for the p1/2,p3/2 and f5/2 orbits.

Significant correlation between proton-neutron maximally aligned states
for the p3/2 and f5/2 orbits, which could be related to J = 2jz pairing
and/or quadrupole-quadrupole in the T=0 channel.

Similarly,quadrupole correlations inside the ladder (proton-proton and
neutron-neutron) as well as those connecting opposite sites
(proton-neutron) of the ladder for the p1/2,p3/2 and f5/2 orbits.

Further work: A. Kruppa, J. Kovács, P. Salamon, Ö. L. Entanglement
and correlation in two-nucleon systems J. Phys. G: Nuc and Part Phys
(2020)



In-medium similarity renormalization group & DMRG

• Starting with two-nucleon (NN) and three-nucleon (3N) interactions,
the VS-IMSRG generates a valence-space-decoupled Hamiltonian
restricted to an active space of limited size.

• Many-body operators of higher particle rank are truncated at the
normal-ordered two-body level, defining the IMSRG(2) truncation.

• Neutron-rich nickel isotopes attract significant experimental attention,
e.g., with the recent discovery of the doubly magic nature of 78Ni
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even-mass nickel isotopes.

• Entropies are calculated at bond dimension
M = 10240 whereas for the excitation ener-
gies the bond dimension was varied between
M = 256− 10240.

Tichai,Knecht,Kruppa,Ö.L.,Moca,Schwenk,Werner,Zarand

(2022)

• Current work: deformation, clustering



Low-lying spectroscopy of N = 50 isotones

• Nowacki et al observed a rapid transition from single-particle-like
excitations in 78Ni to collective rotational excitations in 74Cr.

• Rotational structures can be approximately extracted by comparing the
level spacings of the low-lying spectrum to that of a rigid rotor,
E∗(J) ∼ J(J + 1). For a perfect rotor E∗

4+/E
∗
2+ = 3.33

• The calculated B(E2) values show a maximum for 74Cr for the
2+ → 0+ transition that is characteristic for collective rotational
excitations and a signature of nuclear deformation.
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Multiorbital correlations Sz. Szalay (2015)
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Π({1, 2, 3, 4}):

▶ partitions of the system:
ξ = {X1,X2, . . . ,X|ξ|} ≡ X1|X2| . . . |X|ξ| ∈ Π(L)

▶ refinement: υ ⪯ ξ def.: ∀Y ∈ υ,∃X ∈ ξ : Y ⊆ X
▶ ξ-correlation (ξ-mutual information):

Cξ(ϱ) = min
σ∈Dξ−uncorr

D(ϱ||σ) =
∑
X∈ξ

S(ϱX )− S(ϱ)

▶ multipartite monotonicity: υ ⪯ ξ ⇔ Cυ ≥ Cξ
k-partitionability-correlation and k ′-producibility correlation:

Ck-part(ϱL) = Cµk
(ϱL) = min

|µ|≥k
Cµ(ϱL), Ck′-prod(ϱL) = Cνk′ (ϱL) = min

∀N∈ν:|N|≤k′
Cν(ϱL)



Example (aromatic system): C6H6 (benzene)
Szalay, Barcza, Szilvási, Veis, Ö.L (2017)

“atoms”: α = A1|A2| . . . |A|α|, “bonds”: β = B1|B2| . . . |B|β|∑
A∈α

C⊥,A(ϱA) + Cα(ϱM) =
∑
B∈β

C⊥,B(ϱB) + Cβ(ϱM) = C⊥(ϱM)

Xin

k′
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Tensor topology optimization:
∑

ij Iij × dη
ij (Ex. LiF 6/25)

Energetical ordering (MPS) dij = |i − j | Entanglement localization (MPS)

▶ Reordering orbitals by minimizing the entanglement distance:
Îdist =

∑
i,j Ii,j × |i − j |η ,

▶ Apply spectral graph theory: Fiedler vector x = (x1, . . . xN) is the
solution that minimizes F (x) = x†Lx =

∑
ij Ii,j(xi − xj)

2, with∑
i xi = 0 and

∑
i x

2
i = 1, and the graph Laplacian is

L = D − I with Di,i =
∑

j Ii,j .
The second eigenvector of the Laplacian is the Fiedler vector.

ÖL, Sólyom (2003), Barcza, ÖL, Marti, Reiher (2011)



T3NS a new tensor format Gunst, Verstraete, Wooters, Ö.L., van Neck (2018)
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Redefinition of the fermionic modes by a linear transformation
Krumnow, Veis, Ö.L., Eisert, 2014-2016

• Linear transformations of a set of fermionic annihilation operators {ci}
to a new set {di} satisfying the canonical anti-commutation relations:

ci =
Np∑
j=1

Ui,jdj , p denotes the number of different fermion species

• Under this change of basis a state vector |ψ(U)⟩ = G (U)|ψ(1)⟩
A[1] A[2] A[3] . . . A[n]

g(U) · · ·

· · ·

• Denoting the Hamiltonian written in terms of the transformed modes
by H(U) = G (U)†HG (U), we are interested in the solutions of

(Uopt, |ψopt⟩) = argmin U∈U(Np),
|ψ⟩∈MDmax

⟨ψ|H(U)|ψ⟩.

• The global basis change is composed of local unitaries solutions of

U loc
opt = argminU∈V fj

(
|ψ(1j ⊕ U ⊕ 1N−j−2)⟩

)
,

cost function f
(1)
j (|ψ⟩) = ||Σj

ψ||1 where Σj
ψ denotes the Schmidt

spectrum of |ψ⟩ for a bipartiting cut between sites j and j + 1.



Global fermionic mode optimization via swap gates

Friesecke, Werner, Kapas, Menczer, ÖL(2024)

• Finding an optimal representation of a quantum many body wave
function, i.e., a parametrization with the minimum number of parameters
for a given error margin is a task of utmost importance in modern
quantum physics and chemistry

Ψ =
1∑

µ1,...,µN=0

C (µ1, ..., µN)Φµ1,...,µN

• Computatinal complexity ∼ block entropy area (BEA)

Bα(C ) =
N−1∑
ℓ=1

Sα(ρ1,2,...,ℓ)

ρ1,2,...,ℓ(µ1, .., µℓ;µ
′
1, ..., µ

′
ℓ) =

∑
µℓ+1,...,µN

C (µ1, ..., µN)C
∗(µ′

1, ..., µ
′
ℓ, µℓ+1, ..., µN)

Sα(ρ) =
1

1−α ln (Tr ρα) is the Rényi entropy for some 0 < α < 1.

• The important feature needed is concavity, so that density operators
are favoured whose eigenvalues are either very large or very small.



Under a single particle unitary mode transformation U ∈ U(N)

• New modes φ′
i =

∑
j Uijφj , and C ′ = G (U)†C where G (U) is a unitary

transformation on the space of many-body coefficient tensors.

• For time reversal symmetric case, C and the φi are real-valued and
U ∈ O(N) or, discarding an immaterial overall sign factor, U ∈ SO(N).

• U can be parametrized as U = eAU∗ with U∗ an arbitrary fixed matrix
in SO(N) and A real and skew-symmetric, the parametrization being
unique for U close to U∗.

• Thus stationarity of a scalar function f on SO(N) at U∗ is equivalent to

0 =
d

dt

∣∣∣
t=0

f (etAU∗) = Tr
∂f

∂U
(U∗)U

T
∗ AT , ∀AT = −A

that is to say ∂f
∂U (U∗)U

T
∗ symmetric.

• Reduction to pairwise rotations: To achieve stationarity minimize f
over all pairwise rotations Uij(θ) given by eθEij , Eij = eie

T
j − eje

T
i , where

ei is the unit vector of RN whose i-th component is 1 and whose other
components are zero. This corresponds to the mode transformation
φ′
i = cos θφi + sin θφj , φ

′
j = − sin θφi + cos θφj which leaves all other

modes the same.



Reduction to permutations and nearest neighbor rotations

• Set of all pairwise rotations Uij(θ) can be realized by N/2 global
re-orderings of the orbitals and the N−1 nearest-neighbor rotations for
each ordering.

• if τ1, ..., τN/2 are the specific permutations such that any pair of orbitals
become nearest neighbours under one of these permutations (that is, for
all i < j there exist ν and ℓ such that {τν(i), τν(j)} = {ℓ, ℓ+ 1}), then

Uij(θ) = τ−1
ν Uℓ,ℓ+1(±θ) τν

with ‘+’ if τν(i) < τν(j) and ‘−’ otherwise.

Swap gates controlled permutations: The optimal set of permutations
τ1, ..., τN/2 can be generated by Walecki’s method (1882):

1 2

3 4

5 6

7 8

1 2 3 4 5 6 7 8(a) (b)
P1

P2

P3

P4

• The modes are
placed in a zig-zag
line to the vertices
of a regular polygon
with N vertices



Local mode optimization and block entropy area

Krumnow,Veis,ÖL,Eisert(2015-2016)

• Consecutive permutations are easily generated by two layers of nearest
neighbor swap operations placed in a checkerboard pattern ,i.e., full
forward mode optimization sweep with fixed, but alternating angles of
π/2 and 0 and a backward sweep in a reversed order.

• To avoid truncation of the wavefunction, the bond dimension has to be
increased by a factor of q.

Local mode optimization and block entropy area: H(U) = G (U)†HG (U)
is constructed iteratively from two-mode unitary operators by optimizing
θl,l+1 while sweeping through the network for l = 1 . . .N − 1

U loc
opt = argminU∈V fl

(
|ψ(1l ⊕ U ⊕ 1N−l−2)⟩

)
,

• At each micro-iteration step, fl , i.e., the half-Rényi block entropy
S1/2(ρ{1,2,...,l}) is minimized by a two-mode rotation (disentanglers)

Locality of the BEA: Nearest neighbor rotations by θl,l+1 change only the
block entropy measured when the cut is at mode l , while all other block
entropies remain invariant.



2d spinless fermions with PBCs Krumnow, Veis, Eisert, Ö.L (2019-2021)

H =
∑
⟨i,j⟩

c†i cj +
∑
⟨i,j⟩

Vninj , U =

(
exp(iθ1)cos(θ2) exp(iθ1)sin(θ2)

−exp(−iθ1)sin(θ2) exp(−iθ1)cos(θ2)

)

system block environment block

▶ Optimization on the mps manifold and on the Grassman manifold

▶ Hamiltionian becomes long ranged

H =
n∑

i,j=1

ti,jc
†
i cj +

n∑
i,j,k,l=1

vi,j,k,lc
†
i c

†
j ckcl ,



2d-spinless Hubbard, N = 6× 6 and 10× 10 with D = 80
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Consistency: Perturbation induced by the swap layers can be eliminated
by subsequent application of several DMRG sweeps via nearest neighbor
mode optimization, once the algorithm has found the stationary solution
for both energy and BEA.



Compressing multireference character via fermionic mode

optimization Máté, Petrov, Szalay, ÖL (2022)

• Example: stretching nitrogen dimer in the full space CAS(6,14)
• single→multi reference problem
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(a) Sum of the square of the absolute values of the 1000 largest CI
coefficients for various bond lengths. (b) for the optimized MOs.



• Example: stretching nitrogen dimer in the full space CAS(14,28)
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Figure: (a) Absolute values of the first 25 largest CI coefficients including single
and double excitation levels for for various bond lengths, extracted from the
MPS wave function, obtained by the DMRG algorithm, with a bond dimension
D = 4096. The inscribed numbers are the norm squares of the wave function
component corresponding to single and double excitations for the various bond
lengths.
(b) Similar to (a), but for the optimized MOs with Dopt = 512.
(c) Convergence of the absolute values of the first 25 largest CI coefficients
including single and double excitation levels for r = 4.200a0 for the optimized
MOs, as a function of the bond dimension D.



Long time evolution Krumnow, Eisert, Ö.L. (2019)

▶ At time t = 0 we perturb the system.
▶ After the quench the quasiparticles collide with each other. , the

scattering events are denoted by stars. World lines of the excited
quasiparticle pairs. Entanglement structure of the gas is indicated by
arched red stripes. Att= 0 singlet pairs with zero total momentum
are excited.

▶ There are different time-evolution methods for MPS which are
currently in use to solve the time-dependent Schrödinger equation
(TDSE).

▶ application of Û(δt) = e−iδt Ĥ , i.e. , |ψ(t)⟩ → |ψ(t + δt)⟩
▶ time-evolving block decimation (TEBD), MPOW I,II, Krylov,

time-dependent variational principle (TDVP)
▶ each has advatages and disadvateges.
▶ TDVP → general non-local Hamiltonians (quantum chemsitry)



Coupled cluster method with single and double excitations

tailored by matrix product state wave functions
L. Veis, A. Antalik, F. Neese, Ö.L., J. Pittner (2016)

▶ Formally single reference theory, Fermi vacuum is a single
determinant

▶ Split-amplitude ansatz

ΨTCC = eT Ψref = eT
ext+T CAS

Ψref

▶ T CAS

▶ amplitudes extracted from
DMRG (CASCI) calculation

▶ frozen during CC calculation

▶ account for static correlation

▶ T ext

▶ determined through the usual
CC

▶ account for dynamic
correlation

ΨTCCSD = e

(
T ext
1 +T ext

2

)
e

(
T CAS
1 +T CAS

2

)
Ψref

≈ e

(
T ext
1 +T ext

2

)
ΨCASCI

▶ Requires only small modifications of the CC code



Chromium dimer – correlation energies

▶ Single-point calculation at 1.5 Å
▶ One-particle basis: RHF with Ahlrichs’ SV basis set → (48e,42o)
▶ DMRG space selected based on S (1) profile
▶ DMRG performed with DBSS (ϵtr ≈ 10−7)
▶ Extrapolated DMRG by Olivares-Amaya et al. JCP 142, 034102,

2015 serves as a FCI benchmark

Error analysis: Faulstich, Laestedius, ÖL, Schneider, Kvaal: Quadratic error bound for
a given CAS-EXT split.
Extensions: Jiri Pittner on similarity transformed TCCSD, Andrej Antalik on
LPNO-TCCSD and Jan Brandejs on 4c-DMRG-TCCSD.



Restricted active space DMRG Barcza,Werner,Zaránd,Ö.L.,Szilvási(2021)

a)

ΦA

Φcore

b)

ΦA

ΦV

ΦC

Φcore′

Schematic illustration of the
CAS and RAS concepts.

DMRG-RAS scheme

• In the RAS scheme, in addition to active orbitals some virtual (V) and
core (C) orbitals can also be excited with restrictions: the maximal
number of particle excitations in these orbitals is r .

• Implementation through the dynamically extended active space (DEAS)
procedure. ÖL, J. Sólyom, 2003, (similar appr. by Larsson et al 2022)

Ml = q q q Mr := 16 ≪ 4
3

ML = Mlq MR = qMr



Rigorous mathematical analysis of the error dependence

Friesecke, Barcza, Ö.L. (2022)

N-electron Hilbert space for the DMRG-RAS method:

H(ℓ, k) = HCAS(ℓ)
⊕

HRAS(L− ℓ, k)

E 0(ℓ, k) = min
Ψ∈H(ℓ,k) : ⟨Ψ,Ψ⟩=1

⟨Ψ, HΨ⟩,

partitioning of the full Hamiltonian into a reference Hamiltonian
associated with the CAS energy and a remainder:

H = H0 + H ′ with

H0 = PHP + (E0 +∆)Q

H ′ = H − PHP − (E0 +∆)Q

where P is the projector of H onto the CAS Hilbert space HCAS ,
Q = I − P is the projector onto the RAS Hilbert space, E0 is the CAS
ground state energy, i.e.

E0 = E 0
CAS(ℓ),

and ∆ > 0 is a parameter to be chosen later.



This partitioning has the following desirable features:

(i) The CAS ground state energy is the ground state energy of H0

(ii) The operator H0 − E0 is invertible on the orthogonal complement of
the ground state of H0, yielding well-defined perturbation corrections at
all orders;

(iii) the first order perturbation correction E (1) = ⟨Ψ0|H ′|Ψ0⟩ vanishes
regardless of the choice of the orbitals and parameters such as ℓ and ∆;

(iv) H0 does not couple the CAS and RAS Hilbert spaces, with all the
coupling contained in H ′.

The latter property is evident by re-writing

H − PHP = QHP︸ ︷︷ ︸
HCAS→RAS

+ PHQ︸ ︷︷ ︸
HRAS→CAS

+ QHQ︸ ︷︷ ︸
HRAS→RAS

(where the first term maps CAS to RAS, the second one, RAS to CAS,
and the last one, RAS to itself), and makes transparent that DMRG-RAS
can be considered an embedding method.



Look at the ground state energy Eλ(ℓ, k) of H0 + λH ′ on H(ℓ, k) for
small λ > 0. We focus on the standard choice k = 2.

Assuming the ground state of H0 is nondegenerate and denoting it by Ψ0,

EFCI
λ = E0 + λE (1) + λ2E (2) + λ3E (3) + O(λ4) as λ→ 0.

Working through the algebra we get for the overall error scaling

eλ
RAS = Eλ(ℓ, 2)− EFCI

λ = O(λ4) as λ→ 0.

On the other hand, since E (1) = 0 and E (2) < 0, the pure CAS error
satisfies

eCAS
λ = E0 − EFCI

λ = Ω(λ2) as λ→ 0.

In the weak coupling limit this gives a scaling law which relates the CAS
and DMRG-RAS error:

eRAS
λ = O

(
(eCAS
λ )2

)
as λ→ 0.

In general: the optimal ∆ is the expected value of the spectral gap
between the pure RAS eigenvalues and the CAS ground state with
respect to the particular RAS state Ψ′/||Ψ′||.



New extrapolation procedure: DMRG-RAS-X

DMRG-RAS is a fully self-consistent method, and therefore capable of
capturing more than the guaranteed perturbation contributions, thus we
observe a scaling law of the semi-empirical form

E 0(ℓ, 2)− EFCI = a
(
E 0
CAS(ℓ)− EFCI

)p
for some p > 1.

To predict the exponent p, the prefactor a and the offset EFCI from
E 0
CAS(ℓ) and E 0(ℓ, 2) = ERAS(ℓ) is achieved by minimizing the mean

squared regression error of RAS versus CAS error in a log log plot,

MSE = 1
n

∑
ℓ

(
yℓ − (p · xℓ + log a)

)2

where n is the number of datapoints and

xℓ = log
(
ECAS(ℓ)− EFCI

)
, yℓ = log

(
ERAS(ℓ)− EFCI

)
.

This reduces to a minimization over the single free variable EFCI, thus
the predicted FCI energy is

ERAS−X = argmin
EFCI

MSE,



0.4 0.6 0.8 1
10

-2

10
-1

7

9

11

13

(c)

p=1.9

a=-0.98

Cr
2

(cc-pVDZ)

1.6 1.8 2 2.2
0

0.005

0.01

0.015

0.02

(a)

-2086.9 -2086.89
0

0.005

0.01

0.015

0.02

(b)

0.2 0.25 0.3 0.35 0.4

10
-2

10
-1

5

7
9

11

13

(c)

p=3.48

a=0.66

C
2

(cc-pVQZ)

3 3.5 4
0

0.005

0.01

0.015

0.02

(a)

-75.806 -75.804 -75.802 -75.8
0

0.005

0.01

0.015

0.02

(b)

CAS(12,68) CAS(8,108)
• we first perform our extrapolation scheme yielding the predicted
parameters shown in (a) and (b).

• Next, using the predicted full-CI energy, ERAS−X = −2086.891, we
show in (c) that the linear scaling on double logarithmic axes for different
ℓ values is recovered, as expected.

• E 0(17, 2) = −2086.8769 is already below the CCSDTQ by 8× 10−3,

• the extrapolated energy is between ERAS−X = 2086.884
(pRAS−X = 2.06) and ERAS−X = 2086.891 (pRAS−X = 1.88) using the
first 12 or 14 data points in the fit, leading to an error estimate of the
order of 10−3.



Method Ground state energy
i-FCIQMC-RDME -13482.17495(4)
i-FCIQMC-PT2 -13482.17845(40)
sHCI-VAR -13482.16043
sHCI-PT2 -13482.17338
DMRG -13482.17681
DMRG(D=8192) -13482.1718
DMRG(D=10240,NO) -13482.1754
RAS(23) -13482.1421
RAS(23,NO) -13482.1544

Non-
extrapolated
ground state
energies ob-
tained by various
methods for
the FeMoco
in CAS(54,54)
orbital space.
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(a) Result of the DMRG-
RAS-X for the FeMoco
for the model space taken
from Ref. Reiher(2007).

(b) The same but for the
natural orbital basis.

Produced on CPU-GPU
for less than one day
Friesecke, Barcza, ÖL (2023)



Towards exascale computations on supercomputers

GPU: MPS and TNS
on kilo-processor architectures:
Nemes, Barcza, Nagy, Ö.L., Szolgay, 2014

Massive parallelization
Brabec, Brandejs, Kowalski

Xanntheas, Ö.L., Veis (2020)

FeMoco cluster
[CAS(113,76)]



Centralized scheduling: unideal society
• Set of workers to generate tasks
• Set of workers to transfer tasks
• Set of workers to execute tasks

→ Workers are threads
→ Transfer: IO communication
→ CPU, GPU, FPGA units

▶ Central scheduler has to organize the full workflow, measure
complexity of tasks, distribute tasks, check execution etc

▶ Central scheduler envisions the global aim & wants to accomplish it
▶ Tasks: several millions of independent tensor and matrix operations



Centralized scheduling: Huge overhead, units can be idle

• Central scheduler performs lot of measurements, estimations,
communication to rearrange tasks and workers → huge overhead

▶ Central scheduler cannot see everything in a given moment
→ workers can be idle

▶ Too much workload on scheduler → inefficient scheduling, tasks can
pile up partially



Self motivated workers → ideal ”team-like” society
• Central unit: Contractor, contract book (only meta-data
communicated, boolean-like bookkeeping flags)
• Everybody is motivated to achieve global aim



Novel algorithmic solutions A. Menczer, ÖL (2023)
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Boosting performance via AI accelerators. Wall time: D3 → D
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CAS(113,76)
80GB FP64 • A factor of 40 speedup

compared to a single node
with 128 cores
→ flexible scaling

• 116 TFLOPS > 76
TFLOPS of the FP64 limit
of NVIDIA → utilization of
highly specialized tensor core
units (TCU)

• Power consumption re-
duced by a factor of 5 to 8
→ Green DMRG

FeMoco

dimH = 2.88× 1036

• NVIDIA DGX H100 and Grace Hopper GH200: Testing performance up
to ∼ 250 TFLOPS in collab with NVIDIA and SandboxAQ
M. van Damme, A. Menczer, M. Ganahl, J. Hammond, Ö.L

• Combination of our MPI and GPU kernels: → petascale computing.



Quarter petaflops on a single node ∼ 10000x speedup
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• NVIDIA DGX H100 and Grace Hopper GH200:
Testing performance up to ∼ 250 TFLOPS in collab with NVIDIA and
SandboxAQ M. van Damme, A. Menczer, M. Ganahl, J. Hammond, S. Xantheas, ÖL

• New model to utilize NVIDIA D2D links. A. Menczer ÖL (unpublished 2023)

• Combination of our MPI and GPU kernels: full replacement of boost
library, asynchronous IO, multiNode-multiGPU
→ petascale computing. A. Menczer ÖL (unpublished 2023-2024)



Maximum computational complexity for 2D t − t ′ − V model
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• Half-filled 6 × 6 Hubbard
model at U = 4 on a torus ge-
ometry
• Performance in TFLOPS
• Time in minutes



Our TNS/DMRG code will be used as one of the benchmarks



Outlook: TNS in nuclear structure theory

Suggested/required tasks to be completed for nuclear structure theory

▶ Long time evolution via mode optimization + BUG integrator
(basis-update & Galerkin)

▶ High spin SU(2) symmetries

▶ Higher dimensional tensor network topologies, like TTNS, T3NS

▶ DMRG-TCC

▶ DMRG-RAS-X alternative to IMSRG

▶ Multipartite entanglement

▶ DMRG-SCF like basis optimization

▶ Particle entanglement and clustering

▶ Dissipative quantum systems/Limbladian

▶ 3-body interactions + massive parallelization



Conclusion

▶ Tensor topologies together with proper basis representations are
important for efficient data sparse representaion of the wavefunction

▶ Global mode transformation: MPS/TNS based black-box tool to
improve basis

▶ Long time evolution with adaptive mode transformation is a
promising direction in collab. Eisert, Lübich

▶ Combination of TNS with other (conventional) methods can exploit
benefits of the individual methods

▶ Massive Parallelization MPI and NVIDIA/AMD → exascale
computation

▶ → Simulation of realistic material properties in collab. Riverlane,

Furukawa
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National Research, Development and Innovation Office TKP2021-NVA-04,
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Fellowship programme (IAS-TUM, Germany), SPEC, DOE, (PNNL, USA)



For discussions: Cost optimized TNS Menczer, ÖL 2024 in prep.

• H100 costs 100 USD/hour on Google Cloud

• Schematic plot of hardware topology illustrating the various
communication channels (arrows), such as host to host (H2H), host to
device (H2D) and device to host (D2H), and device to device (D2D), i.e.,
InfiniBand, PCI-E, and NVLink, accordingly.

• The compute node is a very powerful and expen- sive unit surrounded
by one or more cheap auxiliary nodes with minimal computational
capacity, but with substantial amount of RAM



Massively parallel serialization Menczer, ÖL 2024 in prep.

a) Schematic plot of quantum num-
ber based block sparse represen-
tation of matrices and tensors.
Shaded area indicates used sectors
that are processed in computation
and data serialization.

b) Skeleton of serialized data segments used during disk IO save
procedure or MPI based communication. Only one segment is filled with
data in a given time (shaded region) and transferred immediately to
storage media or to another node. This requires only a small additional
memory used for buffering.

c) Skeleton of serialized data segments filled completely with data when
asynchronous save IO procedure is utilized. This leads to substantial
increase in peak memory to store redundant data that is saved to stor-
age media in parallel to subsequent computation tasks.


