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What we talk about when we talk about QML

data generating system

data processing device

C - classical, Q - quantum
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amplification
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inference!06:107
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fitting®
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machine?®
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Boltzmann
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reinforcement
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*There exist important caveats that can limit the applicability of the

method>?.

Biamonte, J., Wittek, P., Pancotti, N. et al Quantum machine learning. Nature 549, 195—
202 (2017). https://doi.org/10.1038/nature23474



The NISQ era
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Variational QML

encoded data gates with optimized parameters measurements
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Why QML (again)?

classical neural network easy quantum model quantum neural network
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Abbas, A., Sutter, D., Zoufal, C. et al. The power of quantum neural networks. Nat
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Advantage in practice?

Better than classical? The subtle art of benchmarking quantum machine learning
models

Joseph Bowles,! * Shahnawaz Ahmed," 2! and Maria Schuld™*

! Xanadu, Toronto, ON, M5G 2C8, Canada
% Chalmers University of Technology
(Dated: March 15, 2024)

Benchmarking models via classical simulations is one of the main ways to judge ideas in quantum
machine learning before noise-free hardware is available. However, the huge impact of the experi-
mental design on the results, the small scales within reach today, as well as narratives influenced
by the commercialisation of quantum technologies make it difficult to gain robust insights. To facil-
itate better decision-making we develop an open-source package based on the PennyLane software
framework and use it to conduct a large-scale study that systematically tests 12 popular quantum
machine learning models on 6 binary classification tasks used to create 160 individual datasets. We
find that overall, out-of-the-box classical machine learning models outperform the quantum clas
fiers. Moreover, removing entanglement from a quantum model often results in as good or better
performance, suggesting that “quantumness” may not be the crucial ingredient for the small learn-
ing tasks considered here. Our benchmarks also unlock investigations beyond simplistic leaderboard
comparisons, and we identify five important questions for quantum model design that follow from
our results.

Much has been written about the “potential” of quan-

tum machine learning, a discipline that asks how quan- %
tum computers fundamentally change what we can learn §
from data [1, 2]. While we have no means of running testing 12 quantum & 6 tasks generating 160 datasets
quantum algorithms on noise-free hardware yet, there are e s it iy @ s i
only a limited number of tools available to assess this po-
tential. Besides proving advantages for artificial problem v ":lz_
settings on paper, certain ideas — most prominently, vari-
ational models designed for near-term quantum technolo- hyperparameter optimisation simulating circuits
gies — can be tested in classical simulations using small with >200,000 models trained up to 18 qubits
datasets. Such benchmarks have in fact become a stan-
dard practice in the quantum machine learning literature software package available at
and are found in almost every paper. https://github.com/XanaduAl/qml k

A taste for the results derived from small-scale bench-
marks can be obtained through a simple literature re- FIG. 1. The scope of the benchmark study at a glance.
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view exercise. Out of 55 relevant papers published on
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Backpropagation

On quantum backpropagation, information reuse, and
cheating measurement collapse

Amira Abbas’?%4, Robbie King®, Hsin-Yuan Huang®f, William J. Huggins?,
Ramis Movassagh!, Dar Gilboa!, and Jarrod R. McClean'*

1Google Quantum Al, Venice, California 90291, USA
2 University of KwaZulu-Natal, Durban, South Africa
3 Institute of Physics, University of Amserdam, Science Park 904, 1098 XH Amsierdam, The Netherlands
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Abstract
The success of modern deep learnmg hmges on the ablllty to train neural networks at
scale. Through clever reuse of i n ili training
through gradient computation at a total cost roughly proportional to running the function,
rather than incurring an additional factor proportional to the number of parameters — which
can now be in the trillions. Naively, one expects that quantum measurement collapse entirely
rules out the reuse of quantum information as in backpropagation. But recent developments
in shadow tomography, which assumes access to multiple copies of a quantum state, have
challenged that notion. Here, we i i whether models can train
as efficiently as classical neural networks. We show that achieving backpropagation scaling is
impossible without access to multiple copies of a state. With this added ability, we introduce
an algorithm with foundations in shadow tomography that matches backpropagation scaling
in quantum resources while reducing classical auxiliary ional costs to open probl
in shadow tomography. These results highlight the nuance of reusing quantum information for
practical purposes and clarify the unique difficulties in training large quantum models, which
could alter the course of quantum machine learning.

62v1l [quant-ph] 22 May 2023



Barren plateaus

ARTICLE

OPEN

Barren plateaus in quantum neural network training
landscapes

Jarrod R. McClean’, Sergio Boixo(® ', Vadim N. Smelyanskiy!, Ryan Babbush! & Hartmut Neven'

proposals. Ive training a
parameterized quantum circuit with a classical optimization loop. Such hybrid quantum-
classical algorithms are popular for applications in quantum simulatian, optimization, and
machine learning. Due to its simplicity and hardware efficiency, randomn circuits are often
proposed as initial guesses for exploring the space of quantum states. We show that the
exponential dimension of Hilbert space and the gradient estimation complexity make this
choice unsuitable for hybrid quantum-classical algorithms run on more than a few qubits
Specifically, we show that for a wide class of reasonable parameterized quantum circuits, the
probability that the gradient along any reasonable direction is non-zero to some fixed pre-
cision is exponentially small as a function of the number of qubits. We argue that ths is
related to the 2-design characteristic of randon circuits, and that solutions to this problem
must be studied.

ARTICLE X
OPEN

Cost function dependent barren plateaus in shallow
parametrized quantum circuits

M. Cerezo 2%, Akira Sone', Tyler Volkoff!, Lukasz Cincio! & Patrick J. Coles'™

Variational quantum algorithms (VQAS) optimize the parameters 0 of a parametrized
quantum circult V(@) to minimize a cost function C. While VQAs may enable practical
applcations of oisy quantum computers, they are nevertheless heuristic methods with
unproven scaling. Here, we rigorously prove two result, assuming V(@) is an alternating
layered ansatz composed of blocks forming local 2-designs. Our first result states that
defining C in terms of global observables leads to exponentially vanishing gradients (ie.,
barren plateaus) even when V(0) is shallow. Hence, several VQAS i the literature must
revise their proposed costs. On the other hand, our second result states that defining C with
local observables leads to at worst 2 polynamially vanishing gradient, so long 25 the depth
of V(0) is Oflogn). Our resuits establish a connection between locality and trainabily.
We illustrate these ideas with large-scale simulations, up to 100 qubits, of a quantum

autoencoder implementation



Defining new architectures

PHYSICAL REVIEW X 11, 041011 (2021)

Absence of Barren Plateaus in Quantum Convolutional Neural Networks

Arthur Pesah ,"Z M. Cerezo,"3 Samson Wang,l‘A Tyler Volkoff,' Andrew T. Somborger,S and Patrick J. Coles'
'Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
2Departmem of Physics and Astronomy, University College London, London WCIE 6BT, United Kingdom
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®  (Received 12 March 2021; revised 13 July 2021; accepted 2 August 2021; published 15 October 2021)

Quantum neural networks (QNNs) have d around the possibility of efficiently
analyzing data. But this excil has been tempered by the exi of exp ially vanishing
gradients, known as barren plateau landscapes, for many QNN archi R ly,
convolutional neural networks (QCNNs) have been prop involving a seq of convi

and pooling layers that reduce the number of qubits while preserving information about relevant data
features. In this work, we rigorously analyze the gradient scaling for the parameters in the QCNN
architecture. We find that the variance of the gradient vanishes no faster than polynomially, implying that
QCNNs s do not exhibit barren plateaus. This result provides an analytical guarantee for the trainability of
randomly initialized QCNNs, which highlights QCNNs as being trainable under random initialization
unlike many other QNN architectures. To derive our results, we introduce a novel graph-based method to
analyze expectation values over Haar-distributed unitaries, which will likely be useful in other contexts.

Finally, we perform numerical si ions to verify our ytical results.

DOL: 10.1103/PhysRevX.11.041011 Subject Areas: Quantum Information



Simulability

09121v2 [quant-ph] 19 Mar 2024

Does provable absence of barren plateaus imply classical simulability?
Or, why we need to rethink variational quantum computing
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A large amount of effort has recently been put into understanding the barren plateau phenomenon.
In this perspective article, we face the increasingly loud elephant in the room and ask a question
that has been hinted at by many but not explicitly addressed: Can the structure that allows one
to avoid barren plateaus also be leveraged to efficiently simulate the loss classically? We present
strong evidence that commonly used models with provable absence of barren plateaus are also
classically simulable, provided that one can collect some classical data from quantum devices during
an initial data acquisition phase. This follows from the observation that barren plateaus result
from a curse of dimensionality, and that current approaches for solving them end up encoding the
problem into some small, classically simulable, subspaces. Thus, while stressing quantum computers
can be essential for collecting data, our analysis sheds serious doubt on the non-classicality of
the i of tum circuits for barren plateau-free
landscapes. We end by discussing caveats in our arguments, the role of smart initializations and the

ibility of provably superpol , or simply practical, ad from running
quantum circuits.
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The Quantum Fourier Transform (again)

[quant-ph] 30 Aug 2024

Inference, interference and invariance:
How the Quantum Fourier Transform can help to learn from data

David Wakeham and Maria Schuld
Xanadu, Toronto, ON, M5G 2C8, Canada

How can we take inspiration from a typical quantum algorithm to design heuristics for machine
learning? A common blueprint, used from Deutsch-Josza to Shor’s algorithm, is to place labeled
information in superposition via an oracle, interfere in Fourier space, and measure. In this paper,
we want to understand how this interference strategy can be used for inference, i.e. to generalize
from finite data samples to a ground truth. Our investigative framework is built around the Hidden
Subgroup Problem (HSP), which we transform into a learning task by replacing the oracle with
classical training data. The standard quantum algorithm for solving the HSP uses the Quantum
Fourier Transform to expose an invariant subspace, i.c., a subset of Hilbert space in which the hidden
symmetry is manifest. Based on this insight, we propose an inference principle that “compares”
the data to this invariant subspace, and suggest a concrete implementation via overlaps of quantum
states. We hope that this leads to well-motivated quantum heuristics that can leverage symmetries
for machine learning applications.

I INTRODUCTION 2 oFr) «compares ol

annihilator data

The Hidden Subgroup Problem (HSP) [1, 2] is the task
of discovering a subgroup from information about the
way it partitions the parent group. While abstract, it
neatly generalizes many problems solved by quantum al-
gorithms, from Deutsch-Jozsa [3] to Simon’s problem [4]
to Shor’s algorithms for period-finding and discrete log-
arithms [5]. The standard quantum routine for the HSP
[6] has a common and embarrassingly simple blueprint:
label all inputs, uniformly superpose, apply the Fourier
transform, and measure. Formally, this samples from a

subgrau

FIG. 1: Which hidden subgroup gave rise to the data?
‘We propose to compare the data with the annihilator of
a given subgroup. The annihilator is computed via a
group Quantum Fourier Transform executed by a
quantum computer.
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Other paradigms

Large-scale quantum reservoir learning with an analog quantum computer
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Quantum machine learning has gained considerable attention as quantum technology advances,
a promising approach for efficiently learning complex data patterns. Despite this promise,
most contemporary quantum methods require significant resources for variational parameter opti-
mization and face issues with vanishing gradients, leading to experiments that are either limited
in scale or lack potential for quantum advantage. To address this, we develop a general-purpose,
gradient-free, and scalable quantum reservoir learning algorithm that harnesses the quantum dy-
namics of neutral-atom analog quantum computers to process data. We experimentally implement
the algorithm, achieving competitive performance across various categories of machine learning
tasks, including binary and multi-cl ion, as well as timeseries prediction. Effective and
improving learning is observed with increasing system sizes of up to 108 qubits, demonstrating the
largest quantum machine learning experiment to date. We further observe comparative quantum
kernel advantage in learning tasks by constructing synthetic datasets based on the geometric differ-
ences between generated quantum and classical data kernels. Our findings demonstrate the potential
of utilizing classically intractable quantum correlations for effective machine learning. We expect
these results to stimulate further extensions to different quantum hardware and machine learning
paradigms, including early fault-tolerant hardware and generative machine learning tasks.

[quant-ph] 2 Jul 2024
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Quantum Computing Education
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Reinforcement Learning
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A (toy) problem in particle accelerator control
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Approximation with a neural network
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Approximation with a Quantum Boltzmann Machine
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Results with and without experience replay
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QBM vs neural networks
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Another problem
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Actor-critic architecture

Actor Critic
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Hybrid actor-critic algorithm for quantum reinforcement learning
at CERN beam lines
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Abstract

Free energy-based reinforcement learning (FERL) with clamped quantum Boltzmann machines
(QBM) was shown to significantly improve the learning efficiency compared to classical
Q-learning with the restriction, however, to discrete state-action space environments. In this paper,
the FERL approach is extended to multi-dimensional continuous state-action space environments
to open the doors for a broader range of real-world applications. First, free energy-based
Q-learning is studied for discrete action spaces, but continuous state spaces and the impact of
experience replay on sample efficiency is assessed. In a second step, a hybrid actor-critic (A-C)
scheme for continuous state-action spaces is developed based on the deep deterministic policy
gradient algorithm combining a classical actor network with a QBM-based critic. The results
obtained with quantum annealing (QA), both simulated and with D-Wave QA hardware, are
discussed, and the performance is compared to classical reinforcement learning methods. The
environments used throughout represent existing particle accelerator beam lines at the European
Organisation for Nuclear Research. Among others, the hybrid A-C agent is evaluated on the actual
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QBM free energy

e The system’s energy states are described by the
Hamiltonian of the transverse-field Ising model

H(V) =— Z W,-jv,-aﬁj - Z ijaﬁja,z]k —rzgﬁj,
icV, j,keH jeH
jeH

* The negative free energy F(v) of the clamped QBM is
used to approximate the Q-function
Q(v) ~ —F(v)

=~ (HW) ~ tr(pvIn(ow)



QBM free energy (2)

e Effective Hamiltonian given by

Nr
1
Heff(V) _ N Z Z Vl/jkhj,/hk,/ + Z WijVihj,l

=1 \ jkeH icV,
jeH
N,
WS hhina + Y Biahin |
jeH 1=1 jeH

with wt = 2‘17 log [coth rﬁff]

¢ Negative free energy F(v) given by
Q(v) =~ —F(v)
=~ () — 5 5 B(elv) log B(elv).



Results with Q-net

e Stable-baselines3 implementation

¢ Near-optimal behaviour after 300+ training interactions
with environment

e Without experience replay: need roughly 10* interactions
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Results with QBMs

¢ SQA and QBM with experience replay: 100 - 120 training
interactions sufficient

¢ Relatively high variability depending on random seed and
the states visited

e After hyperparameter tuning (SQA), train on D-Wave
2000Q annealer

¢ As for SQA: 120 training interactions sufficient

e Save trained QBM weights and evaluate agent with SQA
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