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Do you like silent movies?
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in anticipation of that  
I flooded the slides with way too 

much text. Soz about that. 
But its for the best
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Nature isn’t classical dammit, and if you want to make a simulation of nature 	
you’d better make it quantum mechanical	

and by golly it’s a wonderful problem because it doesn’t look so easy	

Made by my bf chatty
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Nature isn’t classical dammit, and if you want to learn its properties, 	
you’d better make a quantum learner, 	

and by golly it’s a wonderful problem because it doesn’t look so easy	

Would Feynman agree?  Is it true?

Made by my bf chatty



Machine learning vs quantum machine learning (for HEP)

vs

Practice

Theory

Types of evidence for which is “better”

-is simply (generically) better

-large (generic) benchmarks 

-small (generic) benchmarks 

-proof: is (generically) better	
e.g. identical but faster

-proof: is (generically) better	
yet different	

-proof: better in special cases	
or w.r.t. special  metrics	
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-proof: is (generically) better	
e.g. identical but faster

-proof: is (generically) better	
yet different	

-proof: better in special cases	
or w.r.t. special  metrics	

this we can do today!

currently practically impossible

inconclusive - phase transition in size?

rare and *always* with fine print	
(even if just subquadratic speedups)

we don’t know how to do this!

currently practically impossible

Machine learning vs quantum machine learning (for HEP)
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Le Menu:

1) Mathematical framework for learning: Probably Approximately Correct learning	

…and types of advantages one could hope to have	

2) Main result 1: Generic advantages for “evaluation tasks” 	

3) Application: learning of observables	

4) Main result 2: advantages for identification tasks	

5) Reflection on potential practical relevance (spoiler: I have no clue, but at least I have an idea why)
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Main tool: convert learning  statements to statements about complexity theory	



Learning theory and types of learning advantages
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Machine learning, learning theory, and intuition
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-“learning” properties  (of whatever generated the data) from data



Machine learning, learning theory, and intuition
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Example 1: Supervised Higgs or no Higgs

Data:	
(x=measurements, y = {Higgs / Background})

Output: trained classifier takes on input 	
measurement data (one point)	

and outputs Higgs or Background

Data includes all the realistic noise 

-“learning” properties  (of whatever generated the data) from data



Machine learning, learning theory, and intuition

13

Identifying an unknown function	
which we will use	
and it will give the right “predictions”	

given from examples of what it does

Example 1: Supervised Higgs or no Higgs

-“learning” properties  (of whatever generated the data) from data



Machine learning, learning theory, and intuition

14

Data:	
Measurements of ground or Gibbs states

Output: parameters of the Hamiltonian

Example 2: Hamiltonian learning

https://arxiv.org/abs/2004.07266

-“learning” properties  (of whatever generated the data) from data



Machine learning, learning theory, and intuition
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Data was secretly labeled 	
(term, expectation value)	

From the parameters I could 	
in principle produce new measurement outcomes.	

(observable expectation)

Example 2: Hamiltonian learning

-“learning” properties  (of whatever generated the data) from data

https://arxiv.org/abs/2004.07266



Machine learning, learning theory, and intuition
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Learning properties of unknown  function… 	
(specified by the unknown Hamiltonian)	

But here just care about its description

Example 2: Hamiltonian learning

-“learning” properties  (of whatever generated the data) from data

https://arxiv.org/abs/2004.07266



Machine learning, learning theory, and intuition
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Data: database of pairs (material, Tc)

Output: function which predicts Tc	
based on (say) chemical composition	
and structure

Example 3: Tc prediction (superconductivity)

-“learning” properties  (of whatever generated the data) from data



Machine learning, learning theory, and intuition
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Here, the function is not fundamentally unknown.	

Given  of compute, you could compute it 	
from first principles 	

We are looking for a much more concise	
representation of same function

a lota lotalot

Example 3: Tc prediction (superconductivity)

-“learning” properties  (of whatever generated the data) from data



Machine learning, learning theory, and intuition
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Learn the classifier for the purpose of use (“evaluation”)

Learn the classifier properties (“identification”)

“Ground truth” can be unknown, partially known, fully known

and in many cases we are looking for a concise approximation*

-“learning” properties  (of whatever generated the data) from data

*e.g. smaller circuit = smaller time cost



Proving Learning separations	

Is there a learning problem that a QML can learn (efficiently) whereas ML cannot?	

Learning problem? E.g., prediction problem:	

20

ML

Database

What does efficiently mean? Why/how could a CC fail? 	
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A formal framework	



The supervised learning problem

h : = A(data, ⋅ ) : Data → Labels
Machine	

learning algorithm	
A

Data-points  ( ’s) come from a fixed distribution  ⃗x 𝒟

“data”= {( ⃗x i, cj( ⃗x i))}i

We learn a “concept” from some concept class C = {cj}i, cj : ⃗x ↦ {0,1}, ⃗x ∈ {0,1}n

The supervised learning problem - probably approximately correct (PAC) learning — simplified
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function function S ⊆ ℝnℝ or{0,1}m
The supervised learning problem - probably approximately correct (PAC) learning — simplified



The supervised learning problem

h : = A(data, ⋅ ) : Data → Labels
Machine	

learning algorithm	
A

“data”= {( ⃗x i, cj( ⃗x i))}i

We learn a “concept” from some concept class C = {cj}i, cj : ⃗x ↦ {0,1}, ⃗x ∈ {0,1}n

Learner A  learns C efficiently if  concepts , given data labeled by  	
with probability  it outputs , s.t. 	

, 	
with polynomial resources (time, data)  in  , 

∀ cj cj
≥ 1 − δ h

Px∈𝒟(cj(x) ≠ h(x)) ≤ ϵ
n ϵ−1, δ−1

Data-points  ( ’s) come from a fixed distribution  ⃗x 𝒟
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The supervised learning problem - probably approximately correct (PAC) learning — simplified



The supervised learning problem

h : = A(data, ⋅ ) : Data → Labels
Machine	

learning algorithm	
A

“data”= {( ⃗x i, cj( ⃗x i))}i

We learn a “concept” from some concept class C = {cj}i, cj : ⃗x ↦ {0,1}, ⃗x ∈ {0,1}n

Learner A  learns C efficiently if  concepts , given data labeled by  	
with probability  it outputs , s.t. 	

, 	
with polynomial resources (time, data)  in  , 

∀ cj cj
≥ 1 − δ h

Px∈𝒟(cj(x) ≠ h(x)) ≤ ϵ
n ϵ−1, δ−1

25

Data-points  ( ’s) come from a fixed distribution  ⃗x 𝒟

25

The supervised learning problem - probably approximately correct (PAC) learning — simplified

“  and  are equal up to PAC”	
or “Heur- equal”

cj h



“Learning separation/advantages”  concept class which a QC can learn efficiently,	
and a classical computer cannot 	

≈ ∃

26

Two remarks



“Learning separation/advantages”  concept class which a QC can learn efficiently,	
and a classical computer cannot 	

≈ ∃

27

Note whatever happens, it will *have to be contingent on assumptions in complexity theory*	
If (F)BPP = (F)BQP, there *cannot* be a learning separation at all	

So the fundamental question is about the relationship between learning and computing



“Learning separation/advantages”  concept class which a QC can learn efficiently,	
and a classical computer cannot 	

(contingent on assumptions in complexity theory)

≈ ∃

28

Please note:  the definition above inherently carries a notion of “scaling” of the problem	

For a fixed size task… this does not make sense.

Nonetheless, we can (I believe) use such arguments as evidence of suitabilty	
of QML for problems
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Complexity theoretic and scaling arguments for questions about nature

e.g. computing some property of	
quark-gluon plasma may require	
a lattice of some huge but fixed, and	
(perhaps) knowable size .	

Solving a constant-sized problem takes O(1)

(Provable) exponential scaling differences strong evidence	
that at relevant size, quantum solution would take	
infinitesimal time of (astronomic) time needed for classical solution

source: slides of Simone
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Learning v.s. computing
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Learning versus algorithmic complexity

Can we have learning separations… if we 	
assume computational separations

And why is this not trivial?
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Learning versus algorithmic complexity

Can we have learning separations… if we 	
assume computational separations

And why is this not trivial?

cθ(x) = Tr[U(θ)ρ(x)U†(θ)O]
Assume I believe a classical computer cannot compute this function (concept).

Consider concept: 

And if it is… is this what we want?



1.Data gap: Machine learning comes with data… we are given evaluations of c….	

2.Quantum learnability: Must ensure the quantum learner can learn it, 	
and already shallow classical classical circuits are not learnable 	

3. Worst case v.s. heuristics: what does “cannot compute” mean, exactly?	

4.What do we actually mean by learning: evaluation or identification	

Why does classical computational hardness of concepts not (immediately) 	
imply non-learnability

33
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Why does classical computational hardness of concepts not (immediately) 	
imply non-learnability

Classical computers with data can be more powerful.	



Power of data in quantum machine learning, Hsin-Yuan Huang…  Jarrod R. McClean Nat. Com., Vol.12, No. 2631 (2021) 
Provably efficient machine learning for quantum many-body problems  Hsin-Yuan Huang,…John Preskill , Science Vol 377, Issue 6613 (2022)35
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“obfuscated function”
related to “trapdoor”

datapoints + fit  reveals  α, β, γ
37Power of data in quantum machine learning, Hsin-Yuan Huang…  Jarrod R. McClean Nat. Com., Vol.12, No. 2631 (2021) 

Provably efficient machine learning for quantum many-body problems  Hsin-Yuan Huang,…John Preskill , Science Vol 377, Issue 6613 (2022)



Data changes the (computational) game

“Data changes the game” 	
in complexity lingo	

BQP P BPP

(Heur)BPP/samp

NP

standard assumptions	
(classical computers cannot simulate 	

quantum computers)	

	
classical computers cannot 	

learn to solve the same problems that QCs can solve

⟹

(it’s not even the “in practice” vs. “in theory”dichotomy)

38

/



under (seemingly) very mild conditions

“Ground state estimation”

39

…even in seemingly quinessentially quantum tasks



under (seemingly) very mild conditions

“Ground state estimation”

Estimating ground 	
state properties:	

hard even on a QC!*

Estimating ground 	
state properties	
given a database	
easy on a CC!*

Do we even need QCs?? 
40

Seems like: 
…even in seemingly quinessentially quantum tasks



questions?



But we do have a few heroic examples
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Q: How to prove data does not add power to a classical computer?

A: Show classical computer could have generated it by itself!

(later we will show this is not good enough for us, and we can do better)



How does it work?

~

Easy to learn

43



x → ax mod p

~

How does it work?

44



Easy to learn

x → ax mod p

Could be easy to learn, e.g.	
if can compute x → loga(x) (mod p)

Shor’s algorithm ! (quantum learnable)

How does it work?

45



Easy to learn

x → ax mod p

Could be easy to learn, e.g.	
if can compute x → loga(x) (mod p)

Shor’s algorithm ! (quantum learnable)

But is it necessary to apply discrete-log?

How does it work?

46



x → ax mod p

So yes, in a way it is necessary! Not classically learnable.

Theorem: 	
if A can learn all above efficiently given examples	
then A (+classical processing)  can solve discrete log.	
 

How does it work?

47
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Q: How to prove data does not add power to a classical computer?

A: Show classical computer could have generated it by itself!

Example: fa(k) = ak mod N DLPN
a (k) = f −1

a (k)

aDLPN
a (k) mod N = k

Simplified version of heroic example
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Q: How to prove data does not add power to a classical computer?

A: Show classical computer could have generated it by itself!

Example: fa(k) = ak mod N DLPN
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easy to compute hard to compute
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Q: How to prove data does not add power to a classical computer?

A: Show classical computer could have generated it by itself!

Example: fa(k) = ak mod N DLPN
a (k) = f −1

a (k)

aDLPN
a (k) mod N = k

easy to compute hard to compute

Given x cannot compute y = DLP(x)	
Data is {(x, y)}x∼Unif

Simplified version of heroic example



Simplified version of heroic example
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Q: How to prove data does not add power to a classical computer?

A: Show classical computer could have generated it by itself!

Example: fa(k) = ak mod N DLPN
a (k) = f −1

a (k)

aDLPN
a (k) mod N = k

easy to compute hard to compute

Do: choose y random;	
compute 	
re-label: ( )	
x is also uniform at random!

(ay mod N, y)
(x, y = DLP(x))

Given x cannot compute y = DLP(x)	
Data is {(x, y)}x∼Unif
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Q: How to prove data does not add power to a classical computer?

A: Show classical computer could have generated it by itself!

Learning task: 	
given x “predict” DLP(x), having access to valid data: Data={(x, DLPa(x))}x∼Unif

Simplified version of heroic example
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Q: How to prove data does not add power to a classical computer?

Non-learnability by contradiction:	
Let A’ be a learning algorithm that learns DLP.	
Then there exists a classical poly time NON-learning algorithm for DLP:

MLx f(x)

Data

+
D. gen

Data
eff. learning algo eff. data gen.

= MLx f(x)

D. gen

eff. “non-learning” algo!

Simplified version of heroic example



1) Can generate data for random! 	

2) Shor’s algo cracks DLP	

3)  Magic of DLP:*	
 random self-reducibility	

4) We need to evaluate	

Putting it together

54

Differences between computing and learning

Learning separation, assuming DLP is not in P→



1) Can generate data for random! 	

2) Shor’s algo cracks DLP	

3)  Magic of DLP:*	
 random self-reducibility	

4) We need to evaluate	

Putting it together

55

Differences between computing and learning

*We also need a bunch of other useful properties of DLP, such as	
-average case hardness (if you solve on 1/2, you solve always)	
-hard-core bit (computing even a single digit is as hard as everything)	
All of these are key cryptographic properties of DLP



Most known learning separations… 

use this technique to get rid of the data gap (and other). 	
Data does not help as we can generate it. Yay!

v1 in 2000

56



I am not yay, for a major and less major reason.



What about the case of “quantum functions”? 	
Must be better since they are harder?

58



What about the case of “quantum functions”? 	
Must be better since they are harder?

59

No. Quantum-generated data does help the classical learner.

Theorem 1 (paper in prep)	

if  randomized poly-time algorithm for random generation of data - even approximately, 
even with errors -  for any -hard function then is in the second level of the 
polynomial hierarchy

∃
BQP BQP

We provably cannot generate the data:



Next: solving the “major issue”:	
-how to prove classical impossibility of learning when data *does* help?	
(or relate it to complexity theoretic assumptions)	
-how to prove quantum learnability, for some, and then interesting cases	

60



A simple way out: stronger complexity theoretic assumptions

61

NP

BQP P BPP BPP/samp

PHPSPACE

This is the class of problems classical 	
computers can solve in the worst case with 
access to data



A simple way out: stronger complexity theoretic assumptions
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NP

BQP P BPP BPP/samp

PHPSPACE

Huang et al proved it was in P/poly= problems 
solvable with polynomial sized classical circuits

P/poly



A simple way out: stronger complexity theoretic assumptions

63

NP

BQP P BPP BPP/samp

PHPSPACE

We generalized, proved heuristic versions have 
same containment, and also that

HeurP/polyHeur

C. Gyurik, VD https://arxiv.org/pdf/2405.18155 
S. Marshall, VDhttps://arxiv.org/pdf/2306.16028

https://arxiv.org/pdf/2405.18155
https://arxiv.org/pdf/2306.16028


Huh?

It is believed* BQP is not in (Heur)P/poly

*How strongly? At least as strongly as we believe that  RSA or Diffie-Hellman are 
secure against non-uniform adversaries and preprocessing attacks.

It is even more strongly believed that BQP is not in HeurBPP/samp
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Meaning:	
-BQP functions cannot be approximated with polynomially sized classical circuits	

But then:	

-Deep neural networks of size (n,m) can be approximated to arbitrary precision using	
polynomially-sized classical circuits

If we believe BQP is not in HeurP/poly
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Meaning:	
-BQP functions cannot be approximated with polynomially sized classical circuits	

But then:	

-Deep neural networks of size (n,m) can be approximated to arbitrary precision using	
polynomially-sized classical circuits

If we believe BQP is not in HeurP/poly
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If we believe BQP is not in HeurP/poly

Meaning:	
-BQP functions cannot be approximated with polynomially sized classical circuits	

But then:	

-Deep neural networks of size  can be approximated to arbitrary precision using	
polynomially-sized classical circuits

(n, m)

Deep neural networks cannot even approximate the target functions	
without exponential growth. So ofc. cannot learn them either.	
And neither can any other future classical ML model.



Remark:	

topic: complexity theory and algorithmics…	

But, this is a statement about expressivity

DNNs and other classical methods are simply not expressive enough. 
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DNNs and other classical methods are simply not expressive enough. 

https://arxiv.org/abs/1907.03741

C.f.:

Remark:	

topic: complexity theory and algorithmics…	

But, this is a statement about expressivity



Random-verifiable 

Learning problems with BQP-hard concepts which are not in HeurP/poly under some distribution 
are not learnable under same distribution. 	
TH: all BQP complete problems have hard-to-learn learning versions under certain distributions

Classical impossibility

-Bose-Hubbard, XY Hamiltonian (graphs), Fermi-Hubbard on a 2D lattice	
-Electronic structure problems 	

-Topological Quantum Field Theory 	
-Certain supersymmetric theories	
-(1+1) massive  	
-possibly Kogut-Susskind theories

ϕ4

Condensed matter, chemistry:

Toward HEP:

All of these have BQP-hard variants…. which can be classically not learnable…	
(assuming certain claims in complexity theory)



Random-verifiable 

1.Data gap: Machine learning comes with data… we are given evaluations of c….	

2.Quantum learnability: Must ensure the quantum learner can learn it, 	
and already shallow classical classical circuits are not learnable 	

3. Worst case v.s. heuristics: what does “cannot compute” mean, exactly?	

4.What do we actually mean by learning: evaluation or identification	



Random-verifiable 

The trivial solution

for “evaluate” version	
this can even be a singleton	
for classical non-learnability!

Cor. Any polynomially sized concept 
class in BQP with even a single BQP-
complete concept  is both	
(1)classically not-learnable	
(2)quantum learnable

Proof:  	
(1) by representation arguments	
(2) try all and pick most likely; this	

is provably likely a good guess	



Non-trivial solutions: i.e provable learning separations with exponentially-sized 	
(or continuous) concepts

What does not work: 	
parametrized circuits which are trained to fit the concept in a class. 	
In general you hit barren plateaus.



(classical hardness will come from previous generic statements	
… quantum learnability we will have to work for)

Non-trivial solutions: i.e provable learning separations with exponentially-sized 	
(or continuous) concepts

What does work: 	
Exponential learning advantages in learning observables



Exponential learning advantages in learning observables

75

Setting: 	

Data x describes some complex quantum state  that is generated. The process  is known.	
Label y is an expectation value , for an unknown hermitian M.	

Task will be: given a new , output 

ψ(x) x ↦ ψ(x)
Tr[M ψ(x)]

x̃ Tr[Oψ(x̃)]

The task is *not* to output O (although the QC can do this too). 



ψ( ⃗x )

⟨M( ⃗θ )⟩

⃗x

Exponential learning advantages in learning observables

76

complex  enough physical process e.g.	
-time evolution under a hard1 Hamiltonian	
-ground state preparation for a hard2  Hamiltonian	
	
both parametrized by x	

not controlled (x is random), but heralded (we learn x)



Exponential learning advantages in learning observables

ψ( ⃗x )

⟨M( ⃗θ )⟩

⃗x

complex  enough physical process e.g.	
-time evolution under a hard1 Hamiltonian	
-ground state preparation for a hard2  Hamiltonian	
	
both parametrized by x	

not controlled (x is random), but heralded (we learn x)

M is a k-local Hamiltonian  H = ∑
j

fj( ⃗θ )Hj

77

Version 1 (warm-up):



C = {cM( ⃗θ )} ⃗θ Data = {( ⃗x , ⟨M( ⃗θ )⟩ψ( ⃗x ))}

ψ( ⃗x )

⟨M( ⃗θ )⟩

⃗x

Exponential learning advantages in learning observables
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Task: given data above for unknown  (=observable), given a new  output   θ x′￼ ⟨M( ⃗θ )⟩ψ( ⃗x )



ψ( ⃗x )

⟨M( ⃗θ )⟩

⃗x

Classical non-learnability: choose  s.t.  is BQP-complete, so likely not in HeurP/polyU x ↦ ⟨M( ⃗θ )⟩x

Quantum learnability: for every x in dataset D, a QC can compute   for poly-many	
different . This yields a noisy system of equations. Nonetheless, LASSO regression can	
provably find good enough solutions

⟨M( ⃗θ ′￼ )⟩x⃗θ ′￼

Exponential learning advantages in learning observables

79



Exponential learning advantages in learning observables
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More general observables?	
Whenever the QC can “learn it” we can use this as a building block.



TH. Every (non-adaptive) quantum algorithm A for learning of a unitary 	
(which relies on discterizable or discrete probes and measurements)	
induces a classical data learning separation (learning an observable parametrized by said unitary) 

Exponential learning advantages in learning observables

VA
A

81



TH. Every (non-adaptive) quantum algorithm A for learning of a unitary 	
(which relies on discterizable or discrete probes and measurements)	
induces a classical data learning separation (learning an observable parametrized by said unitary) 

Exponential learning advantages in learning observables

VA
A

again, something to	
do with a “hard” 	
parametrized Hamiltonian

82



C = {f α(x)}α → C′￼ = {f x(α)}x

83

Deta
ils m

atter
 for a

dvan
tage

s!



C = {f α(x)}α → C′￼ = {f x(α)}x

84

Details matter for separations!



Details matter for separations!
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1.Data gap: Machine learning comes with data… we are given evaluations of c….	

2.Quantum learnability: Must ensure the quantum learner can learn it, 	
and already shallow classical classical circuits are not learnable 	

3. Worst case v.s. heuristics: what does “cannot compute” mean, exactly?	

4.What do we actually mean by learning: evaluation or identification	



The old… evaluation v.s. identification task

87

What if the classical learning challenge was: output the description of the correct classifier



The old… evaluation v.s. identification task
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What if the classical learning challenge was: output the description of the correct classifier

Matters because:	
-sometimes we want just that like Ham. learning (another example next slide)	
-separations in “evaluate” class arguably not about learning at all	
-removes our main tool to prove separations 	
(very hard challenge - we know sometimes classical works even if concepts intractable )



Example: learning of order parameters

89

given labeled data from two different phases (=Hamiltonian settings and phase) 	
identify which measurement would differentiate the phases



Example: learning of order parameters
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given labeled data from two different phases (=Hamiltonian settings and phase) 	
identify which measurement quantum circuit would differentiate the phases

https://arxiv.org/pdf/2306.16028

https://arxiv.org/pdf/2306.16028


Example: learning of order parameters

91

Oopsie. No-gos. 	
If a concept is “evaluate”-learnable for a QC then it is “identify”-learnable for a classical computer.	
	
Proof: the “classifier” will include the “quantum training algorithm” and the dataset…	
“Learning” will be offloaded to the description..

https://arxiv.org/pdf/2306.16028

given labeled data from two different phases (=Hamiltonian settings and phase) 	
identify which measurement quantum circuit would differentiate the phases

https://arxiv.org/pdf/2306.16028


Example: learning of order parameters
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given labeled data from two different phases (=Hamiltonian settings and phase) 	
identify which measurement quantum circuit would differentiate the phases

We need to be more precise: limit allowed “descriptions of classifier”. 	

If the output has to be “a k-local observable” then it may be leading to a separation 	

https://arxiv.org/pdf/2306.16028

https://arxiv.org/pdf/2306.16028


Example: learning of order parameters
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given labeled data from two different phases (=Hamiltonian settings and phase) 	
identify which measurement quantum circuit would differentiate the phases

We need to be more precise: limit allowed “descriptions of classifier”. 	

If the output has to be “a k-local observable” then it may be leading to a separation 	

https://arxiv.org/pdf/2306.16028

More on how to formalize this in extra slides if you want to see…	

https://arxiv.org/pdf/2306.16028


PAC learning separations for “identify” case

94 https://arxiv.org/pdf/2306.16028

Proven previously:	
-there exist cryptographic settings w/ learning separation with classically tractable 
concepts and with fixed hypotheses classes	

-

https://arxiv.org/pdf/2306.16028


95 https://arxiv.org/pdf/2306.16028

DCR separation

Concept class:

f(x) = 3 x mod N {gd(x) = xd mod N}d

Hypothesis class

For DCR ∃ dN s.t. f(x) = gdN
(x)

Computing it given N it is believed to be intractable

Data is generatable.

Learning computing  is easy→ dN

https://arxiv.org/pdf/2306.16028


96 https://arxiv.org/pdf/2306.16028

DCR separation

Concept class:

f(x) = 3 x mod N {gd(x) = xd mod N}d

Hypothesis class

Its about hard representations of easy functions…

Again… no way to map onto quantum functions

Its not about evaluation…

https://arxiv.org/pdf/2306.16028


PAC learning separations for “identify” case for quantum functions
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New result (paper in prep): 	

TH: learning separation for the proper PAC identify case (identify = pick for concept class) 
with quantum functions possible under:	

-certain assumptions on overlaps of concepts 	
(concepts should be “quite different”, but we know this property can be satisfied)	

-stronger complexity theoretic assumptions, namely unless BQP in fourth level of PH	

(probably both can be improved)



Some general thoughts on why QML and limitations and strengths of approach
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1) Fundamental questions answered with a yes (deferred to complexity theory).	

2) Consequences on practice? Unclear for reasons:	
I. about asymptotics, real world usually fixed size	
II. not perfectly aligned with natural problems	
III. there is more to life beyond PAC	

3) QML could have applications 	
*even before advantage from simulations*	
circuits given by algorithm v.s. smallest we can find given data	

4) Theory can point toward “bad idea” learning settings	
(e.g. if learning problem is P(data | input), and input set is small… it *is* classically learnable)	

5)  Advantage can come from other reasons than expressivity, easier to identify in rigorous framework



Consequences on near-term quantum computing

1) Learning separations achievable when simulation achievable (and probably earlier see 2)

2) Learning separations conceivable with fewer resources than for simulation

-analogy: trained NNs make a significant dent in NP-hard problems	
because HeurP/samp likely contains more than BPP

-trained QNNs can do even more with less	
open: HeurBQP/samp - how far does it go in e.g. QMA?

(there can be better, smaller quantum circuits for simulation	
that we can find given data)
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QML application, and QML analysis seem to point to
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Summary

Learning separations pervasive…but a lot of details that matter: 	
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QML and cats v dogs and big data QML and complexity theory

QML may disappoint if we ask it 

to do… what it was not meant to do

(how precisely do you want to get cats

v. dogs!? Is 99% not good enough?)

Complexity theory may disappoint for similar reasons.

It “works” asymptotically (or “really really big”)
Condensed matter: Avogadro number

(but in exotic matter! Topological etc…)

HEP: Lattice gauge theories, energy scales…
102



Machine	
learning 	

algorithm A

hypothesis class	
{h : 𝒳 → {0,1}}

Concept class	
,	

distribution over 
{cj : 𝒳 → {0,1}}

𝒳

Class.	
Class. Obfs.	

Quant.

Class./Quant. Class./Quant.

 A small zoo of types of separations make sense (CC, CQ) vs (QC, QQ)

(some don’t)

Main parts of learning theory



https://arxiv.org/abs/2208.06339

DCRI binary a class, with concepts in P. 	
Proven to be hard to learn (so it is about learning)	

only in the restricted hypothesis case

Discrete cube root identification
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Other applications and related results

Provable advantages in QML where	
*only the training* is quantum, and use classical

Existence of vari veryational [sic] QML models 
which are trainable and non-dequantizable

Understanding advice when the advice is 
computationally bounded

Unintended spin-off: best known separation 
between classical and quantum computers


