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Do you like silent movies?
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in anticipation of that  
I flooded the slides with way too 

much text. Soz about that. 
But its for the best
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Nature	isn’t	classical	dammit,	and	if	you	want	to	make	a	simulation	of	nature		
you’d	better	make	it	quantum	mechanical	

and	by	golly	it’s	a	wonderful	problem	because	it	doesn’t	look	so	easy	

Made by my bf chatty



5

Nature	isn’t	classical	dammit,	and	if	you	want	to	learn	its	properties,		
you’d	better	make	a	quantum	learner,		

and	by	golly	it’s	a	wonderful	problem	because	it	doesn’t	look	so	easy	

Would	Feynman	agree?		Is	it	true?

Made by my bf chatty



Machine	learning	vs	quantum	machine	learning	(for	HEP)

vs

Practice

Theory

Types	of	evidence	for	which	is	“better”

-is	simply	(generically)	better

-large	(generic)	benchmarks	

-small	(generic)	benchmarks	

-proof:	is	(generically)	better	
e.g.	identical	but	faster

-proof:	is	(generically)	better	
yet	different	

-proof:	better	in	special	cases	
or	w.r.t.	special		metrics	
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currently	practically	impossible

inconclusive	-	phase	transition	in	size?

rare	and	*always*	with	fine	print	
(even	if	just	subquadratic	speedups)

we	don’t	know	how	to	do	this!
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e.g.	identical	but	faster
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yet	different	

-proof:	better	in	special	cases	
or	w.r.t.	special		metrics	
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currently	practically	impossible

inconclusive	-	phase	transition	in	size?

rare	and	*always*	with	fine	print	
(even	if	just	subquadratic	speedups)

we	don’t	know	how	to	do	this!

currently	practically	impossible
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Types	of	evidence	for	which	is	“better”



Le	Menu:

1) Mathematical	framework	for	learning:	Probably	Approximately	Correct	learning	

…and	types	of	advantages	one	could	hope	to	have	

2) Main	result	1:	Generic	advantages	for	“evaluation	tasks”		

3) Application:	learning	of	observables	

4) Main	result	2:	advantages	for	identification	tasks	

5) Reflection	on	potential	practical	relevance	(spoiler:	I	have	no	clue,	but	at	least	I	have	an	idea	why)
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Main	tool:	convert	learning		statements	to	statements	about	complexity	theory	



Learning	theory	and	types	of	learning	advantages
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Machine	learning,	learning	theory,	and	intuition
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-“learning”	properties		(of	whatever	generated	the	data)	from	data



Machine	learning,	learning	theory,	and	intuition
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Example	1:	Supervised	Higgs	or	no	Higgs

Data:	
(x=measurements,	y	=	{Higgs	/	Background})

Output:	trained	classifier	takes	on	input		
measurement	data	(one	point)	

and	outputs	Higgs	or	Background

Data	includes	all	the	realistic	noise	

-“learning”	properties		(of	whatever	generated	the	data)	from	data



Machine	learning,	learning	theory,	and	intuition
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Identifying	an	unknown	function	
which	we	will	use	
and	it	will	give	the	right	“predictions”	

given	from	examples	of	what	it	does

Example	1:	Supervised	Higgs	or	no	Higgs

-“learning”	properties		(of	whatever	generated	the	data)	from	data



Machine	learning,	learning	theory,	and	intuition
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Data:	
Measurements	of	ground	or	Gibbs	states

Output:	parameters	of	the	Hamiltonian

Example	2:	Hamiltonian	learning

https://arxiv.org/abs/2004.07266

-“learning”	properties		(of	whatever	generated	the	data)	from	data



Machine	learning,	learning	theory,	and	intuition
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Data	was	secretly	labeled		
(term,	expectation	value)	

From	the	parameters	I	could		
in	principle	produce	new	measurement	outcomes.	

(observable	expectation)

Example	2:	Hamiltonian	learning

-“learning”	properties		(of	whatever	generated	the	data)	from	data

https://arxiv.org/abs/2004.07266



Machine	learning,	learning	theory,	and	intuition
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Learning	properties	of	unknown		function…		
(specified	by	the	unknown	Hamiltonian)	

But	here	just	care	about	its	description

Example	2:	Hamiltonian	learning

-“learning”	properties		(of	whatever	generated	the	data)	from	data

https://arxiv.org/abs/2004.07266



Machine	learning,	learning	theory,	and	intuition
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Data:	database	of	pairs	(material,	Tc)

Output:	function	which	predicts	Tc	
based	on	(say)	chemical	composition	
and	structure

Example	3:	Tc	prediction	(superconductivity)

-“learning”	properties		(of	whatever	generated	the	data)	from	data



Machine	learning,	learning	theory,	and	intuition
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Here,	the	function	is	not	fundamentally	unknown.	

Given	 	of	compute,	you	could	compute	it		
from	first	principles		

We	are	looking	for	a	much	more	concise	
representation	of	same	function

a lota lotalot

Example	3:	Tc	prediction	(superconductivity)

-“learning”	properties		(of	whatever	generated	the	data)	from	data



Machine	learning,	learning	theory,	and	intuition
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Learn	the	classifier	for	the	purpose	of	use	(“evaluation”)

Learn	the	classifier	properties	(“identification”)

“Ground	truth”	can	be	unknown,	partially	known,	fully	known

and	in	many	cases	we	are	looking	for	a	concise	approximation*

-“learning”	properties		(of	whatever	generated	the	data)	from	data

*e.g.	smaller	circuit	=	smaller	time	cost



Proving	Learning	separations	

Is	there	a	learning	problem	that	a	QML	can	learn	(efficiently)	whereas	ML	cannot?	

Learning	problem?	E.g.,	prediction	problem:	

20

ML

Database

What	does	efficiently	mean?	Why/how	could	a	CC	fail?		
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A	formal	framework	



The	supervised	learning	problem

h : = A(data, ⋅ ) : Data → Labels
Machine	

learning	algorithm	
A

Data-points		( ’s)	come	from	a	fixed	distribution	 	⃗x 𝒟

“data”= {( ⃗x i, cj( ⃗x i))}i

We	learn	a	“concept”	from	some	concept	class	C = {cj}i, cj : ⃗x ↦ {0,1}, ⃗x ∈ {0,1}n

The	supervised	learning	problem	-	probably	approximately	correct	(PAC)	learning	—	simplified
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The	supervised	learning	problem

h : = A(data, ⋅ ) : Data → Labels
Machine	

learning	algorithm	
A

Data-points		( ’s)	come	from	a	fixed	distribution	 	⃗x 𝒟
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function function S ⊆ ℝnℝ or{0,1}m
The	supervised	learning	problem	-	probably	approximately	correct	(PAC)	learning	—	simplified



The	supervised	learning	problem

h : = A(data, ⋅ ) : Data → Labels
Machine	

learning	algorithm	
A

“data”= {( ⃗x i, cj( ⃗x i))}i

We	learn	a	“concept”	from	some	concept	class	C = {cj}i, cj : ⃗x ↦ {0,1}, ⃗x ∈ {0,1}n

Learner	A		learns	C	efficiently	if	 	concepts	 ,	given	data	labeled	by	 		
with	probability	 	it	outputs	 ,	s.t.		

,		
with	polynomial	resources	(time,	data)		in		 ,	

∀ cj cj
≥ 1 − δ h

Px∈𝒟(cj(x) ≠ h(x)) ≤ ϵ
n ϵ−1, δ−1

Data-points		( ’s)	come	from	a	fixed	distribution	 	⃗x 𝒟
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The	supervised	learning	problem	-	probably	approximately	correct	(PAC)	learning	—	simplified
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∀ cj cj
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Data-points		( ’s)	come	from	a	fixed	distribution	 	⃗x 𝒟
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The	supervised	learning	problem	-	probably	approximately	correct	(PAC)	learning	—	simplified

“ 	and	 	are	equal	up	to	PAC”	
or	“Heur-	equal”

cj h



“Learning	separation/advantages”	 	 concept	class	which	a	QC	can	learn	efficiently,	
and	a	classical	computer	cannot		

≈ ∃

26

Two	remarks



“Learning	separation/advantages”	 	 concept	class	which	a	QC	can	learn	efficiently,	
and	a	classical	computer	cannot		

≈ ∃

27

Note	whatever	happens,	it	will	*have	to	be	contingent	on	assumptions	in	complexity	theory*	
If	(F)BPP	=	(F)BQP,	there	*cannot*	be	a	learning	separation	at	all	

So	the	fundamental	question	is	about	the	relationship	between	learning	and	computing



“Learning	separation/advantages”	 	 concept	class	which	a	QC	can	learn	efficiently,	
and	a	classical	computer	cannot		

(contingent	on	assumptions	in	complexity	theory)

≈ ∃
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Please	note:		the	definition	above	inherently	carries	a	notion	of	“scaling”	of	the	problem	

For	a	fixed	size	task…	this	does	not	make	sense.

Nonetheless,	we	can	(I	believe)	use	such	arguments	as	evidence	of	suitabilty	
of	QML	for	problems
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Complexity	theoretic	and	scaling	arguments	for	questions	about	nature

e.g.	computing	some	property	of	
quark-gluon	plasma	may	require	
a	lattice	of	some	huge	but	fixed,	and	
(perhaps)	knowable	size	.	

Solving	a	constant-sized	problem	takes	O(1)

(Provable)	exponential	scaling	differences	strong	evidence	
that	at	relevant	size,	quantum	solution	would	take	
infinitesimal	time	of	(astronomic)	time	needed	for	classical	solution

source:	slides	of	Simone
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Learning	v.s.	computing
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Learning	versus	algorithmic	complexity

Can	we	have	learning	separations…	if	we		
assume	computational	separations

And	why	is	this	not	trivial?
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Learning	versus	algorithmic	complexity

Can	we	have	learning	separations…	if	we		
assume	computational	separations

And	why	is	this	not	trivial?

cθ(x) = Tr[U(θ)ρ(x)U†(θ)O]
Assume	I	believe	a	classical	computer	cannot	compute	this	function	(concept).

Consider	concept:	

And	if	it	is…	is	this	what	we	want?



1.Data	gap:	Machine	learning	comes	with	data…	we	are	given	evaluations	of	c….	

2.Quantum	learnability:	Must	ensure	the	quantum	learner	can	learn	it,		
and	already	shallow	classical	classical	circuits	are	not	learnable		

3.	Worst	case	v.s.	heuristics:	what	does	“cannot	compute”	mean,	exactly?	

4.What	do	we	actually	mean	by	learning:	evaluation	or	identification	

Why	does	classical	computational	hardness	of	concepts	not	(immediately)		
imply	non-learnability

33



1.Data	gap:	Machine	learning	comes	with	data…	we	are	given	evaluations	of	c….	

2.Quantum	learnability:	Must	ensure	the	quantum	learner	can	learn	it,		
and	already	shallow	classical	classical	circuits	are	not	learnable		

3.	Worst	case	v.s.	heuristics:	what	does	“cannot	compute”	mean,	exactly?	

4.What	do	we	actually	mean	by	learning:	evaluation	or	identification	

34

Why	does	classical	computational	hardness	of	concepts	not	(immediately)		
imply	non-learnability

Classical	computers	with	data	can	be	more	powerful.	



Power of data in quantum machine learning, Hsin-Yuan Huang…  Jarrod R. McClean Nat. Com., Vol.12, No. 2631 (2021) 
Provably efficient machine learning for quantum many-body problems  Hsin-Yuan Huang,…John Preskill , Science Vol 377, Issue 6613 (2022)35



36Power of data in quantum machine learning, Hsin-Yuan Huang…  Jarrod R. McClean Nat. Com., Vol.12, No. 2631 (2021) 
Provably efficient machine learning for quantum many-body problems  Hsin-Yuan Huang,…John Preskill , Science Vol 377, Issue 6613 (2022)



“obfuscated	function”
related	to	“trapdoor”

datapoints	+	fit		reveals		α, β, γ
37Power of data in quantum machine learning, Hsin-Yuan Huang…  Jarrod R. McClean Nat. Com., Vol.12, No. 2631 (2021) 

Provably efficient machine learning for quantum many-body problems  Hsin-Yuan Huang,…John Preskill , Science Vol 377, Issue 6613 (2022)



Data	changes	the	(computational)	game

“Data	changes	the	game”		
in	complexity	lingo	

BQP P BPP

(Heur)BPP/samp

NP

standard	assumptions	
(classical	computers	cannot	simulate		

quantum	computers)	

	
classical	computers	cannot		

learn	to	solve	the	same	problems	that	QCs	can	solve

⟹

(it’s	not	even	the	“in	practice”	vs.	“in	theory”dichotomy)

38

/



under	(seemingly)	very	mild	conditions

“Ground	state	estimation”

39

…even	in	seemingly	quinessentially	quantum	tasks



under	(seemingly)	very	mild	conditions

“Ground	state	estimation”

Estimating	ground		
state	properties:	

hard	even	on	a	QC!*

Estimating	ground		
state	properties	
given	a	database	
easy	on	a	CC!*

Do	we	even	need	QCs??	
40

Seems	like:	
…even	in	seemingly	quinessentially	quantum	tasks



questions?



But	we	do	have	a	few	heroic	examples

42

Q:	How	to	prove	data	does	not	add	power	to	a	classical	computer?

A:	Show	classical	computer	could	have	generated	it	by	itself!

(later	we	will	show	this	is	not	good	enough	for	us,	and	we	can	do	better)



How	does	it	work?

~

Easy	to	learn

43



x → ax mod p

~

How	does	it	work?

44



Easy	to	learn

x → ax mod p

Could	be	easy	to	learn,	e.g.	
if	can	compute	x → loga(x) (mod p)

Shor’s algorithm ! (quantum learnable)

How	does	it	work?

45



Easy	to	learn

x → ax mod p

Could	be	easy	to	learn,	e.g.	
if	can	compute	x → loga(x) (mod p)

Shor’s algorithm ! (quantum learnable)

But is it necessary to apply discrete-log?

How	does	it	work?

46



x → ax mod p

So	yes,	in	a	way	it	is	necessary!	Not	classically	learnable.

Theorem:		
if	A	can	learn	all	above	efficiently	given	examples	
then	A	(+classical	processing)		can	solve	discrete	log.	
	

How	does	it	work?

47
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Q:	How	to	prove	data	does	not	add	power	to	a	classical	computer?

A:	Show	classical	computer	could	have	generated	it	by	itself!

Example:	fa(k) = ak mod N DLPN
a (k) = f −1

a (k)

aDLPN
a (k) mod N = k

Simplified	version	of	heroic	example
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Q:	How	to	prove	data	does	not	add	power	to	a	classical	computer?

A:	Show	classical	computer	could	have	generated	it	by	itself!

Example:	fa(k) = ak mod N DLPN
a (k) = f −1

a (k)

aDLPN
a (k) mod N = k

easy to compute hard to compute

Simplified	version	of	heroic	example
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Q:	How	to	prove	data	does	not	add	power	to	a	classical	computer?

A:	Show	classical	computer	could	have	generated	it	by	itself!

Example:	fa(k) = ak mod N DLPN
a (k) = f −1

a (k)

aDLPN
a (k) mod N = k

easy to compute hard to compute

Given	x	cannot	compute	y	=	DLP(x)	
Data	is	{(x, y)}x∼Unif

Simplified	version	of	heroic	example



Simplified	version	of	heroic	example

51

Q:	How	to	prove	data	does	not	add	power	to	a	classical	computer?

A:	Show	classical	computer	could	have	generated	it	by	itself!

Example:	fa(k) = ak mod N DLPN
a (k) = f −1

a (k)

aDLPN
a (k) mod N = k

easy to compute hard to compute

Do:	choose	y	random;	
compute	 	
re-label:	( )	
x	is	also	uniform	at	random!

(ay mod N, y)
(x, y = DLP(x))

Given	x	cannot	compute	y	=	DLP(x)	
Data	is	{(x, y)}x∼Unif
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Q:	How	to	prove	data	does	not	add	power	to	a	classical	computer?

A:	Show	classical	computer	could	have	generated	it	by	itself!

Learning	task:		
given	x	“predict”	DLP(x),	having	access	to	valid	data:	Data={(x, DLPa(x))}x∼Unif

Simplified	version	of	heroic	example



53

Q:	How	to	prove	data	does	not	add	power	to	a	classical	computer?

Non-learnability	by	contradiction:	
Let	A’	be	a	learning	algorithm	that	learns	DLP.	
Then	there	exists	a	classical	poly	time	NON-learning	algorithm	for	DLP:

MLx f(x)

Data

+
D.	gen

Data
eff.	learning	algo eff.	data	gen.

= MLx f(x)

D.	gen

eff.	“non-learning”	algo!

Simplified	version	of	heroic	example



1)	Can	generate	data	for	random!		

2)	Shor’s	algo	cracks	DLP	

3)		Magic	of	DLP:*	
	random	self-reducibility	

4)	We	need	to	evaluate	

Putting	it	together

54

Differences	between	computing	and	learning

Learning	separation,	assuming	DLP	is	not	in	P→



1)	Can	generate	data	for	random!		

2)	Shor’s	algo	cracks	DLP	

3)		Magic	of	DLP:*	
	random	self-reducibility	

4)	We	need	to	evaluate	

Putting	it	together
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Differences	between	computing	and	learning

*We	also	need	a	bunch	of	other	useful	properties	of	DLP,	such	as	
-average	case	hardness	(if	you	solve	on	1/2,	you	solve	always)	
-hard-core	bit	(computing	even	a	single	digit	is	as	hard	as	everything)	
All	of	these	are	key	cryptographic	properties	of	DLP



Most	known	learning	separations…	

use	this	technique	to	get	rid	of	the	data	gap	(and	other).		
Data	does	not	help	as	we	can	generate	it.	Yay!

v1 in 2000

56



I	am	not	yay,	for	a	major	and	less	major	reason.



What	about	the	case	of	“quantum	functions”?		
Must	be	better	since	they	are	harder?

58



What	about	the	case	of	“quantum	functions”?		
Must	be	better	since	they	are	harder?

59

No.	Quantum-generated	data	does	help	the	classical	learner.

Theorem	1	(paper	in	prep)	

if	 	randomized	poly-time	algorithm	for	random	generation	of	data	-	even	approximately,	
even	with	errors	-		for	any	 -hard	function	then	 is	in	the	second	level	of	the	
polynomial	hierarchy

∃
BQP BQP

We	provably	cannot	generate	the	data:



Next:	solving	the	“major	issue”:	
-how	to	prove	classical	impossibility	of	learning	when	data	*does*	help?	
(or	relate	it	to	complexity	theoretic	assumptions)	
-how	to	prove	quantum	learnability,	for	some,	and	then	interesting	cases	

60



A	simple	way	out:	stronger	complexity	theoretic	assumptions

61

NP

BQP P BPP BPP/samp

PHPSPACE

This	is	the	class	of	problems	classical		
computers	can	solve	in	the	worst	case	with	
access	to	data



A	simple	way	out:	stronger	complexity	theoretic	assumptions

62

NP

BQP P BPP BPP/samp

PHPSPACE

Huang	et	al	proved	it	was	in	P/poly=	problems	
solvable	with	polynomial	sized	classical	circuits

P/poly



A	simple	way	out:	stronger	complexity	theoretic	assumptions

63

NP

BQP P BPP BPP/samp

PHPSPACE

We	generalized,	proved	heuristic	versions	have	
same	containment,	and	also	that

HeurP/polyHeur

C. Gyurik, VD https://arxiv.org/pdf/2405.18155 
S. Marshall, VDhttps://arxiv.org/pdf/2306.16028

https://arxiv.org/pdf/2405.18155
https://arxiv.org/pdf/2306.16028


Huh?

It	is	believed*	BQP	is	not	in	(Heur)P/poly

*How	strongly?	At	least	as	strongly	as	we	believe	that		RSA	or	Diffie-Hellman	are	
secure	against	non-uniform	adversaries	and	preprocessing	attacks.

It	is	even	more	strongly	believed	that	BQP	is	not	in	HeurBPP/samp
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Meaning:	
-BQP	functions	cannot	be	approximated	with	polynomially	sized	classical	circuits	

But	then:	

-Deep	neural	networks	of	size	(n,m)	can	be	approximated	to	arbitrary	precision	using	
polynomially-sized	classical	circuits

If	we	believe	BQP	is	not	in	HeurP/poly
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Meaning:	
-BQP	functions	cannot	be	approximated	with	polynomially	sized	classical	circuits	

But	then:	

-Deep	neural	networks	of	size	(n,m)	can	be	approximated	to	arbitrary	precision	using	
polynomially-sized	classical	circuits

If	we	believe	BQP	is	not	in	HeurP/poly
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If	we	believe	BQP	is	not	in	HeurP/poly

Meaning:	
-BQP	functions	cannot	be	approximated	with	polynomially	sized	classical	circuits	

But	then:	

-Deep	neural	networks	of	size	 	can	be	approximated	to	arbitrary	precision	using	
polynomially-sized	classical	circuits

(n, m)

Deep	neural	networks	cannot	even	approximate	the	target	functions	
without	exponential	growth.	So	ofc.	cannot	learn	them	either.	
And	neither	can	any	other	future	classical	ML	model.



Remark:	

topic:	complexity	theory	and	algorithmics…	

But,	this	is	a	statement	about	expressivity

DNNs	and	other	classical	methods	are	simply	not	expressive	enough.	
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DNNs	and	other	classical	methods	are	simply	not	expressive	enough.	

https://arxiv.org/abs/1907.03741

C.f.:

Remark:	

topic:	complexity	theory	and	algorithmics…	

But,	this	is	a	statement	about	expressivity



Random-verifiable	

Learning	problems	with	BQP-hard	concepts	which	are	not	in	HeurP/poly	under	some	distribution	
are	not	learnable	under	same	distribution.		
TH:	all	BQP	complete	problems	have	hard-to-learn	learning	versions	under	certain	distributions

Classical	impossibility

-Bose-Hubbard,	XY	Hamiltonian	(graphs),	Fermi-Hubbard	on	a	2D	lattice	
-Electronic	structure	problems		

-Topological	Quantum	Field	Theory		
-Certain	supersymmetric	theories	
-(1+1)	massive	 		
-possibly	Kogut-Susskind	theories

ϕ4

Condensed	matter,	chemistry:

Toward	HEP:

All	of	these	have	BQP-hard	variants….	which	can	be	classically	not	learnable…	
(assuming	certain	claims	in	complexity	theory)



Random-verifiable	

1.Data	gap:	Machine	learning	comes	with	data…	we	are	given	evaluations	of	c….	

2.Quantum	learnability:	Must	ensure	the	quantum	learner	can	learn	it,		
and	already	shallow	classical	classical	circuits	are	not	learnable		

3.	Worst	case	v.s.	heuristics:	what	does	“cannot	compute”	mean,	exactly?	

4.What	do	we	actually	mean	by	learning:	evaluation	or	identification	



Random-verifiable	

The	trivial	solution

for	“evaluate”	version	
this	can	even	be	a	singleton	
for	classical	non-learnability!

Cor.	Any	polynomially	sized	concept	
class	in	BQP	with	even	a	single	BQP-
complete	concept		is	both	
(1)classically	not-learnable	
(2)quantum	learnable

Proof:			
(1) by	representation	arguments	
(2) try	all	and	pick	most	likely;	this	

is	provably	likely	a	good	guess	



Non-trivial	solutions:	i.e	provable	learning	separations	with	exponentially-sized		
(or	continuous)	concepts

What	does	not	work:		
parametrized	circuits	which	are	trained	to	fit	the	concept	in	a	class.		
In	general	you	hit	barren	plateaus.



(classical	hardness	will	come	from	previous	generic	statements	
…	quantum	learnability	we	will	have	to	work	for)

Non-trivial	solutions:	i.e	provable	learning	separations	with	exponentially-sized		
(or	continuous)	concepts

What	does	work:		
Exponential	learning	advantages	in	learning	observables



Exponential	learning	advantages	in	learning	observables
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Setting:		

Data	x	describes	some	complex	quantum	state	 	that	is	generated.	The	process	 	is	known.	
Label	y	is	an	expectation	value	 ,	for	an	unknown	hermitian	M.	

Task	will	be:	given	a	new	 ,	output	

ψ(x) x ↦ ψ(x)
Tr[M ψ(x)]

x̃ Tr[Oψ(x̃)]

The	task	is	*not*	to	output	O	(although	the	QC	can	do	this	too).	



ψ( ⃗x )

⟨M( ⃗θ )⟩

⃗x

Exponential	learning	advantages	in	learning	observables
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complex		enough	physical	process	e.g.	
-time	evolution	under	a	hard1	Hamiltonian	
-ground	state	preparation	for	a	hard2		Hamiltonian	
	
both	parametrized	by	x	

not	controlled	(x	is	random),	but	heralded	(we	learn	x)



Exponential	learning	advantages	in	learning	observables

ψ( ⃗x )

⟨M( ⃗θ )⟩

⃗x

complex		enough	physical	process	e.g.	
-time	evolution	under	a	hard1	Hamiltonian	
-ground	state	preparation	for	a	hard2		Hamiltonian	
	
both	parametrized	by	x	

not	controlled	(x	is	random),	but	heralded	(we	learn	x)

M	is	a	k-local	Hamiltonian	 	H = ∑
j

fj( ⃗θ )Hj
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Version	1	(warm-up):



C = {cM( ⃗θ )} ⃗θ Data = {( ⃗x , ⟨M( ⃗θ )⟩ψ( ⃗x ))}

ψ( ⃗x )

⟨M( ⃗θ )⟩

⃗x

Exponential	learning	advantages	in	learning	observables
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Task:	given	data	above	for	unknown	 	(=observable),	given	a	new	 	output	 		θ x′ ⟨M( ⃗θ )⟩ψ( ⃗x )



ψ( ⃗x )

⟨M( ⃗θ )⟩

⃗x

Classical	non-learnability:	choose	 	s.t.	 	is	BQP-complete,	so	likely	not	in	HeurP/polyU x ↦ ⟨M( ⃗θ )⟩x

Quantum	learnability:	for	every	x	in	dataset	D,	a	QC	can	compute		 	for	poly-many	
different	 .	This	yields	a	noisy	system	of	equations.	Nonetheless,	LASSO	regression	can	
provably	find	good	enough	solutions

⟨M( ⃗θ ′ )⟩x⃗θ ′ 

Exponential	learning	advantages	in	learning	observables
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Exponential	learning	advantages	in	learning	observables

80

More	general	observables?	
Whenever	the	QC	can	“learn	it”	we	can	use	this	as	a	building	block.



TH.	Every	(non-adaptive)	quantum	algorithm	A	for	learning	of	a	unitary		
(which	relies	on	discterizable	or	discrete	probes	and	measurements)	
induces	a	classical	data	learning	separation	(learning	an	observable	parametrized	by	said	unitary)	

Exponential	learning	advantages	in	learning	observables

VA
A
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TH.	Every	(non-adaptive)	quantum	algorithm	A	for	learning	of	a	unitary		
(which	relies	on	discterizable	or	discrete	probes	and	measurements)	
induces	a	classical	data	learning	separation	(learning	an	observable	parametrized	by	said	unitary)	

Exponential	learning	advantages	in	learning	observables

VA
A

again,	something	to	
do	with	a	“hard”		
parametrized	Hamiltonian
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C = {f α(x)}α → C′ = {f x(α)}x
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C = {f α(x)}α → C′ = {f x(α)}x

84

Details	matter	for	separations!



Details	matter	for	separations!
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1.Data	gap:	Machine	learning	comes	with	data…	we	are	given	evaluations	of	c….	

2.Quantum	learnability:	Must	ensure	the	quantum	learner	can	learn	it,		
and	already	shallow	classical	classical	circuits	are	not	learnable		

3.	Worst	case	v.s.	heuristics:	what	does	“cannot	compute”	mean,	exactly?	

4.What	do	we	actually	mean	by	learning:	evaluation	or	identification	



The	old…	evaluation	v.s.	identification	task
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What	if	the	classical	learning	challenge	was:	output	the	description	of	the	correct	classifier



The	old…	evaluation	v.s.	identification	task

88

What	if	the	classical	learning	challenge	was:	output	the	description	of	the	correct	classifier

Matters	because:	
-sometimes	we	want	just	that	like	Ham.	learning	(another	example	next	slide)	
-separations	in	“evaluate”	class	arguably	not	about	learning	at	all	
-removes	our	main	tool	to	prove	separations		
(very	hard	challenge	-	we	know	sometimes	classical	works	even	if	concepts	intractable	)



Example:	learning	of	order	parameters
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given	labeled	data	from	two	different	phases	(=Hamiltonian	settings	and	phase)		
identify	which	measurement	would	differentiate	the	phases



Example:	learning	of	order	parameters
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given	labeled	data	from	two	different	phases	(=Hamiltonian	settings	and	phase)		
identify	which	measurement	quantum	circuit	would	differentiate	the	phases

https://arxiv.org/pdf/2306.16028

https://arxiv.org/pdf/2306.16028


Example:	learning	of	order	parameters
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Oopsie.	No-gos.		
If	a	concept	is	“evaluate”-learnable	for	a	QC	then	it	is	“identify”-learnable	for	a	classical	computer.	
	
Proof:	the	“classifier”	will	include	the	“quantum	training	algorithm”	and	the	dataset…	
“Learning”	will	be	offloaded	to	the	description..

https://arxiv.org/pdf/2306.16028

given	labeled	data	from	two	different	phases	(=Hamiltonian	settings	and	phase)		
identify	which	measurement	quantum	circuit	would	differentiate	the	phases

https://arxiv.org/pdf/2306.16028


Example:	learning	of	order	parameters
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given	labeled	data	from	two	different	phases	(=Hamiltonian	settings	and	phase)		
identify	which	measurement	quantum	circuit	would	differentiate	the	phases

We	need	to	be	more	precise:	limit	allowed	“descriptions	of	classifier”.		

If	the	output	has	to	be	“a	k-local	observable”	then	it	may	be	leading	to	a	separation		

https://arxiv.org/pdf/2306.16028

https://arxiv.org/pdf/2306.16028


Example:	learning	of	order	parameters
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given	labeled	data	from	two	different	phases	(=Hamiltonian	settings	and	phase)		
identify	which	measurement	quantum	circuit	would	differentiate	the	phases

We	need	to	be	more	precise:	limit	allowed	“descriptions	of	classifier”.		

If	the	output	has	to	be	“a	k-local	observable”	then	it	may	be	leading	to	a	separation		

https://arxiv.org/pdf/2306.16028

More	on	how	to	formalize	this	in	extra	slides	if	you	want	to	see…	

https://arxiv.org/pdf/2306.16028


PAC	learning	separations	for	“identify”	case

94 https://arxiv.org/pdf/2306.16028

Proven	previously:	
-there	exist	cryptographic	settings	w/	learning	separation	with	classically	tractable	
concepts	and	with	fixed	hypotheses	classes	

-

https://arxiv.org/pdf/2306.16028


95 https://arxiv.org/pdf/2306.16028

DCR separation

Concept class:

f(x) = 3 x mod N {gd(x) = xd mod N}d

Hypothesis class

For DCR ∃ dN s.t. f(x) = gdN
(x)

Computing it given N it is believed to be intractable

Data is generatable.

Learning computing  is easy→ dN

https://arxiv.org/pdf/2306.16028


96 https://arxiv.org/pdf/2306.16028

DCR separation

Concept class:

f(x) = 3 x mod N {gd(x) = xd mod N}d

Hypothesis class

Its about hard representations of easy functions…

Again… no way to map onto quantum functions

Its not about evaluation…

https://arxiv.org/pdf/2306.16028


PAC	learning	separations	for	“identify”	case	for	quantum	functions
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New	result	(paper	in	prep):		

TH:	learning	separation	for	the	proper	PAC	identify	case	(identify	=	pick	for	concept	class)	
with	quantum	functions	possible	under:	

-certain	assumptions	on	overlaps	of	concepts		
(concepts	should	be	“quite	different”,	but	we	know	this	property	can	be	satisfied)	

-stronger	complexity	theoretic	assumptions,	namely	unless	BQP	in	fourth	level	of	PH	

(probably	both	can	be	improved)



Some	general	thoughts	on	why	QML	and	limitations	and	strengths	of	approach

98

1) Fundamental	questions	answered	with	a	yes	(deferred	to	complexity	theory).	

2) Consequences	on	practice?	Unclear	for	reasons:	
I. about	asymptotics,	real	world	usually	fixed	size	
II. not	perfectly	aligned	with	natural	problems	
III. there	is	more	to	life	beyond	PAC	

3) QML	could	have	applications		
*even	before	advantage	from	simulations*	
circuits	given	by	algorithm	v.s.	smallest	we	can	find	given	data	

4) Theory	can	point	toward	“bad	idea”	learning	settings	
(e.g.	if	learning	problem	is	P(data	|	input),	and	input	set	is	small…	it	*is*	classically	learnable)	

5) 	Advantage	can	come	from	other	reasons	than	expressivity,	easier	to	identify	in	rigorous	framework



Consequences	on	near-term	quantum	computing

1)	Learning	separations	achievable	when	simulation	achievable	(and	probably	earlier	see	2)

2)	Learning	separations	conceivable	with	fewer	resources	than	for	simulation

-analogy:	trained	NNs	make	a	significant	dent	in	NP-hard	problems	
because	HeurP/samp	likely	contains	more	than	BPP

-trained	QNNs	can	do	even	more	with	less	
open:	HeurBQP/samp	-	how	far	does	it	go	in	e.g.	QMA?

(there	can	be	better,	smaller	quantum	circuits	for	simulation	
that	we	can	find	given	data)
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QML application, and QML analysis seem to point to
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Summary

Learning	separations	pervasive…but	a	lot	of	details	that	matter:		
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QML and cats v dogs and big data QML and complexity theory

QML may disappoint if we ask it 

to do… what it was not meant to do

(how precisely do you want to get cats

v. dogs!? Is 99% not good enough?)

Complexity theory may disappoint for similar reasons.

It “works” asymptotically (or “really really big”)
Condensed matter: Avogadro number

(but in exotic matter! Topological etc…)

HEP: Lattice gauge theories, energy scales…
102



Machine	
learning		

algorithm	A

hypothesis	class	
{h : 𝒳 → {0,1}}

Concept	class	
,	

distribution	over	
{cj : 𝒳 → {0,1}}

𝒳

Class.	
Class.	Obfs.	

Quant.

Class./Quant. Class./Quant.

	A	small	zoo	of	types	of	separations	make	sense	(CC,	CQ)	vs	(QC,	QQ)

(some	don’t)

Main	parts	of	learning	theory



https://arxiv.org/abs/2208.06339

DCRI	binary	a	class,	with	concepts	in	P.		
Proven	to	be	hard	to	learn	(so	it	is	about	learning)	

only	in	the	restricted	hypothesis	case

Discrete cube root identification
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Other applications and related results

Provable	advantages	in	QML	where	
*only	the	training*	is	quantum,	and	use	classical

Existence	of	vari	veryational	[sic]	QML	models	
which	are	trainable	and	non-dequantizable

Understanding	advice	when	the	advice	is	
computationally	bounded

Unintended	spin-off:	best	known	separation	
between	classical	and	quantum	computers


