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Tree Tensor Networks classifiers:
Why?

Hardware

FPGA
• Deterministic latency 
• Limited resources

Use case
• Jet tagging for HEP experiments, e.g. CMS
• Currently done offline by complex ML models 

like ParticleNet on already filtered data
• Objective: deploy a tagger online in the L1 

trigger of CMS experiment to improve selection 
efficiency

Software

Training
• Initialisation
• Optimisation:

 Global SGD
 Sweeping

Explainability
• Measurement of physical quantities
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Tree Tensor Networks classifiers:
Why?

Software

Training
• Initialisation
• Optimisation:

 Global SGD
 Sweeping

Explainability
• Measurement of physical quantities

FPGA

Explainability
• The model can be “explained” through physical 

measurements
 No black-boxes for filtering out ~98% of data

Compressibility
• The number of parameters can be reduced, post-

learning
 Fit the model to limited resources hardware

Speed
• Based on simple operations and parallelizable
 Compliance with latency limits
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Initialisation Optimisation

Tree Tensor Networks classifiers:
Training
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Randomly initialised

Tree Tensor Networks classifiers:
Initialisation
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Randomly initialised
Each layer progressively 
project data into a lower 

dimensional space[1]

[1] E Miles Stoudenmire, Learning relevant features of data with multi-scale tensor networks, 
Quantum Sci. Technol. 3 034003 (2018). https://doi.org/10.1088/2058-9565/aaba1a

Tree Tensor Networks classifiers:
Initialisation
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Global SGD

Pros:

•Treat TTN parameters as classical 
NN parameters

•Exploit gradient tracking 
automation of PyTorch

Cons:

• Suffers from barren plateaus

Sweeping

VS

Pros:

•Decompose a large problem in many 
smaller problems

•More stable and robust, enabling 
training of larger models

Cons:

• Must be manually implemented, 
thus can be slower

Tree Tensor Networks classifiers:
Optimisation
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Software implementation

Structure
TIndex
• Base class for tensor indexing
• Can be used as key in dictionaries

TTN
• Fundamental class to construct a full TTN
• Equipped with methods to enable TTN functionality: 

contraction, initialization, derivative, expectation 
value, entanglement entropy, drawing

TTNModel
• Derived class of both TTN and torch.nn.Model
• This provides a ML based approach to optimise the 

TTN, with (an almost free) SGD
• Implements the Sweeping optimisation algorithm

Characteristics
• Open-source
• Developed from scratch
• Based on PyTorch
• Enables to train and explain a TTN ML model
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Tests on hyperparameters

Initialisation on/off:

• The initialisation procedure 
moves the model towards 
optimum

• From there, the training
procedure is facilitated to find 
the optimum 

Global SGD vs. Sweeping:

• Sweeping is more stable and 
robust, reaching the optimum 
more frequently, but slower

• Global SGD doesn’t work for 
large models
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Tests on hyperparameters:
Performance

• Approximately linear 
dependence 
(thanks PyTorch)

• Expected at least quadratic 
dependence (the number of 
nodes is 𝒪𝒪 𝑁𝑁2 )

• Actually worse

• Roughly linear dependence
(NVIDIA GTX 1050)

• Greater batch size -> better 
exploitation of parallel 
computing capabilities
(thanks PyTorch)
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Tests on synthetic datasets

Iris

Commonly used in ML for 
benchmarking purposes

Characteristics

• 4 features

• 150 samples

• 3 classes:
Iris-setosa, Iris-versicolor, 
Iris-virginica

Titanic LHCb

Commonly used in ML for 
benchmarking purposes

Characteristics

• 8 features (originally 13)

• 1043 samples (originally 
1309)

• 2 classes:
(not) survived

Dataset coming from LHCb
open data, already used in 
literature to test TTNs in ML [2]

Characteristics

• 16 features

• ∼ 1.1 × 106 samples

• 2 classes:
𝑏𝑏 vs �𝑏𝑏

[2] Felser, T., Trenti, M., Sestini, L. et al. Quantum-inspired machine learning on high-energy 
physics data. npj Quantum Inf 7, 111 (2021). https://doi.org/10.1038/s41534-021-00443-w13



Tests on synthetic datasets

Iris Titanic LHCb

Accuracy
(Training/Test)

99,1% / 
96,7%

80,9% / 
77,0%

61,7% / 
61,8%

AUC 1,0 0,83 0,66

Accuracy
(smaller)

96,7% / 
96,7%

79,3% / 
74,1%

60,0% / 
60,3%

AUC
(smaller) 0,99 0,84 0,63
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Tests on synthetic datasets:
Explainability

Two-sites 𝜎𝜎𝑧𝑧 correlation Entanglement entropy
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• Different hardware implement 
different logic

• Simulate model behaviour in different 
numerical representations

• On FPGA, APFP representation

• Studied model performance 
dependence on the number of bits 
used, by means of QPyTorch

• Further compression

Tests on synthetic datasets:
Towards hardware
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Future perspectives

TTN based emulation and ML
Implement the TTN ansatz both in the Quantum MATCHA 
and CHAI TEA applications to improve performance and 
accuracy of quantum computer emulations.

Hardware optimisation
Optimise these algorithms exploiting TN properties for 
faster execution on specialized hardware.

Online jet tagging
Deploy in the online selection algorithm a b-tagger.

20

Extension to other ansatzes
TTN may be not powerful enough for some specific tasks. 
Other ansatzes like MERA are worth exploring.



Hardware optimisation

Gauge freedom

FPGA GPU

What

• Exploit the characteristics of different 
hardware for faster execution of 
computations

• Parallelism, different numerical 
representations (APFP, TF32)

How

• Compressibility of TNs

• Gauge freedom

Why

• Enable fast, low-resource simulations, 
accelerating research into quantum 
algorithms and making it widely feasible.
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TTN based emulation

MPS based emulation

Pros

• Well developed technology, integrated in 
popular emulation libraries (Quantum 
MATCHA TEA, qiskit)

• Straightforward application of one and 
two qubits gates

Cons

• Supports only linear topology circuits

• Difficult representation of long distance
interactions

22
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TTN based emulation

Pros

• Can handle longer distance interactions

• Non-linear circuits

P. Seitz, I. Medina, E. Cruz, Q. Huang, and C. B. Mendl, Simulating 
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TTN based emulation
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• More complex operations

• Still difficulty for circuits with high 
connectivity
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TTN based emulation

Figures from: P. Seitz, I. Medina, E. Cruz, Q. Huang, and C. B. Mendl, Simulating 
quantum circuits using tree tensor networks, Quantum 7, 964 (2023).

TTN based emulation

Pros

• Can handle longer distance interactions

• Non-linear circuits

Cons

• More complex operations

• Still difficulty for circuits with high 
connectivity

Tests

• Computation time and resource usage

• Final state accuracy for common 
quantum algorithms
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TTN based ML
Quantum-Enhanced ML

What

• Quantum computer as part of a hybrid 
quantum-classical model

• Classical part optimizes classical 
parameters controlling the quantum part

 Expand CHAI TEA to use MATCHA TEA 
for hybrid quantum-classical ML. Expose 
as PyTorch layers

Top figure from: D. Peral-García, J. Cruz-Benito, F. J. García-Peñalvo, Systematic 
literature review: Quantum machine learning and its applications, Computer Science 
Review, Volume 51, 2024, 100619, ISSN 1574-0137.
Bottom figure from: Tensorflow Quantum.

Why

• Offer a complete framework

• Competitive performances w.r.t.
Tensorflow Quantum, possibly improving 
on TorchQauntum
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Thank you for your attention
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Software studies



Sweeping analysis



Barren plateaus
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Tensors

Multi-dimensional 
arrays

• Generalisation of the idea of 

vectors and matrices.

• Connected to software 

representation. 

Multi-linear maps

• Extending the idea of linear 

maps (matrices).

• Useful to interpret some 

TNs algorithms.

Elements of tensor 
product space

• Define properties such as 

order and shape.

• Connected to quantum 

many-body systems:

Ψ = �
𝑖𝑖 𝑁𝑁

Ψ 𝑖𝑖 𝑁𝑁 𝑖𝑖1 ⊗ ⋯⊗ |𝑖𝑖𝑁𝑁⟩



Tensor operations

SVD / 
eigenvalue

Index fusing 
& splitting

Contraction

Manipulations Decompositions

QR



Isometrisation



Isometrisation



Differentiation



Derivative

𝜕𝜕
𝜕𝜕𝑇𝑇[𝑘𝑘] =
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TN ansatzes

TTNMPS

PEPS MERA



Extend to other ansatzes

PEPS

MERA

What

• Explore other, more complex ansatez like 
PEPS and MERA

• Integrate them in the Quantum TEA 
framework making the switch between 
different ansatzes effortless

Why

• Different geometries are guaranteed to 
capture higher amount of entropy and 
longer-range interactions

• Thought for non-linear systems → can 
stand higher connectivity



Results on synthetic datasets
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Classifiers on hardware accelerators:
GPU

• GPU predictor implemented as part 
of internship for Tensor AI 
Solutions

• Based on cuTENSOR, a CUDA 
library for tensor contraction on 
NVIDIA GPUs

• Tested on the trained models 
mentioned before 

• Tested on FSOCO dataset for 
traffic cones detection

Results:
 Perfect match between software 

and hardware outputs
 Partial compliance with video 

frame-rates



Classifiers on hardware accelerators:
GPU

• Trained a model on FSOCO dataset, containing 
high-quality camera images with cones 
delimited by bounding boxes

• Traffic cones detection performed through 
sliding windows technique

• Features entropy explain what the model 
learned

• Model shows promising results in object 
identification, but further refinements are 
needed


	Diapositiva numero 1
	Tree Tensor Networks
	Tree Tensor Networks classifiers
	Tree Tensor Networks classifiers
	Tree Tensor Networks classifiers
	Tree Tensor Networks classifiers
	Tree Tensor Networks classifiers
	Tree Tensor Networks classifiers:�Why?
	Tree Tensor Networks classifiers:�Why?
	Diapositiva numero 12
	Diapositiva numero 13
	Diapositiva numero 14
	Diapositiva numero 15
	Diapositiva numero 16
	Diapositiva numero 17
	Diapositiva numero 18
	Software implementation
	Tests on hyperparameters
	Tests on hyperparameters
	Tests on hyperparameters
	Tests on hyperparameters:�Performance
	Tests on synthetic datasets
	Tests on synthetic datasets
	Tests on synthetic datasets:�Explainability
	Tests on synthetic datasets:�Explainability
	Tests on synthetic datasets:�Explainability
	Tests on synthetic datasets:�Explainability
	Tests on synthetic datasets:�Explainability
	Tests on synthetic datasets:�Explainability
	Tests on synthetic datasets:�Explainability
	Tests on synthetic datasets:�Explainability
	Tests on synthetic datasets:�Towards hardware
	Future perspectives
	Hardware optimisation
	TTN based emulation
	TTN based emulation
	TTN based emulation
	TTN based emulation
	TTN based emulation
	TTN based ML
	Diapositiva numero 43
	Diapositiva numero 44
	Diapositiva numero 45
	Sweeping analysis
	Barren plateaus
	Diapositiva numero 48
	Tensors
	Tensor operations
	Diapositiva numero 51
	Isometrisation
	Diapositiva numero 53
	Derivative
	Diapositiva numero 55
	Quantum TEA library
	Quantum TEA library
	Quantum TEA library
	Quantum TEA library
	Quantum TEA library
	Quantum TEA library
	Quantum TEA library
	Quantum TEA library
	TN ansatzes
	Extend to other ansatzes
	Diapositiva numero 66
	Titanic
	Titanic
	Titanic
	Striped images
	Striped images
	Striped images
	Iris
	Iris
	Iris
	Iris
	Diapositiva numero 77
	LHCb
	LHCb
	LHCb
	LHCb
	Diapositiva numero 82
	Classifiers on hardware accelerators:�GPU
	Classifiers on hardware accelerators:�GPU

