
Tree Tensor Network implementation on FPGA

Lorenzo Borella
University of Padua and INFN
lorenzo.borella.1@phd.unipd.it

5 Novembre 2024

Workshop on Tensor Networks and (Quantum) Machine Learning for High-Energy Physics

Introduction
• Tree Tensor Networks (TTN) can be

trained as Machine Learning (ML)
classifiers.

• Classical data samples mapped to
represent a separable quantum state ϕ(x).

• Supervised Learning: teach the TTN
how to classify each sample, following the
decision function:

f x = W ∙ ϕ(x)

• Eventually, the TTN architecture can
encode the learned information
representing a quantum entangled state.

TTN inference on FPGA

TTN

• Optimized learning: SVD, bond

dimension tuning

• Safe pruning post-training:

entropy and correlation.

• Linear algebra: only tensor

contraction operations.

• Highly parallelizable inference

algorithm.

• Programmable hardware,

extremely versatile.

• Well suited for parallel

computation.

• Limited resources, need for

architecture compression.

• Achievable ultra-low latency.

FPGA

• Compressed architectures:

optimal exploitation of FPGA

resources.

• Performances comparable to

classic ML methods.

• Sub-microsecond latency:

deployable for online processing.

TTN on FPGA

TTN inference on FPGA

• Task: binary classification.

• Datasets: Iris, Titanic for benchmarking and
LHCb open data for physics case.

• Architectures: several combinations of
hyperparameters, number of features and
feature mappings tested.

• Software: successfully trained several
architectures.

• Hardware: inference offloaded in FPGA and
validated.

https://www.kaggle.com/datasets/uciml/iris
https://www.kaggle.com/c/titanic/data

Inference in hardware

𝑧𝑖 = ෍

𝑗,𝑘

𝑥𝑗𝑦𝑘𝑉𝑖𝑗𝑘

1. Stream of data that needs to be

classified is sent to the FPGA.

2. Feature mapping is applied on input

data.

3. Full contraction with the TTN

architecture.

4. Retrieve final probability and classify

sample. Single node contraction: implement this operation

with different degrees of parallelization to trade-off

between resources and latency.

Repeat for each node and layers in the tree, executing

independent computations parallelly.

FPGA resources

• Digital Signal Processors (DSP):
units that perform arithmetic
operations inside FPGAs.

• Read-Only Memory (ROM):
memory blocks that can be
configured and read from internal
logic.

• Look-Up Tables (LUT): necessary
to implement complex functions with
finite precision.

Used in the definition of the single node contraction
to multiply 16-bit numbers.

The trained weights of TTNs are written on FPGA
register blocks, stored in memory and read by the
logic for each operation.

Used for building the static function needed for the
input feature mapping.

Full Parallel implementation

Maximize number of DSPs used and minimize total

algorithmic latency

Partial Parallel implementation

Reuse some of the DSPs, with a resulting increase

in latency.

Latency

Resources

Quantization

Inference validation

Titanic [2,4,8,1], N=8, 100 samples LHCb [2,4,8,16,1], N=16, 500 samples

Conclusions
• Validated VHDL Firmware for

TTN inference on FPGA with
different degrees of
parallelization.

• Deterministic projections of
resources and latency values for
different TTN architectures.

• Exactely reproduced the
behaviour of the b-tagging
classifier studied in:

Felser, T., Trenti, M., Sestini, L. et
al. npj Quantum Inf 7, 111 (2021),
Quantum-inspired machine
learning on high-energy physics
data

https://doi.org/10.1038/s41534-021-00443-w
https://doi.org/10.1038/s41534-021-00443-w
https://doi.org/10.1038/s41534-021-00443-w

Possible future prospects

Borella L., Coppi A., Pazzini J. et al.,
Quantum machine learning classifiers implemented on
FPGA for ultra-low latency applications.
ICHEP 2024: https://indi.to/YXJT9

• Explore different TN examples (MPS, MERA, PEPS etc.) and tasks.

• Improve firmware with additional trade-off between latency and resource consumption.

• Move the project to higher level programming language (e.g. from VHDL to HLS4ML).

• Hardware inference on Versal AI Engines and compare with current implementation.

• Consider possibility of training on FPGA and possible applications.

Borella L., Coppi A., Pazzini J. et al.,
Ultra-low latency quantum-inspired machine learning
predictors implemented on FPGA arXiv:2409.16075v2

https://indi.to/YXJT9
arxiv:2409.16075v2

Thank you for your attention!

	Slide 1: Tree Tensor Network implementation on FPGA
	Slide 2: Introduction
	Slide 3: TTN inference on FPGA
	Slide 4: TTN inference on FPGA
	Slide 5: Inference in hardware
	Slide 6: FPGA resources
	Slide 7: Full Parallel implementation
	Slide 8: Partial Parallel implementation
	Slide 9: Latency
	Slide 10: Resources
	Slide 11: Quantization
	Slide 12: Inference validation
	Slide 13: Conclusions
	Slide 14: Possible future prospects
	Slide 15

