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Introduction
• Tree Tensor Networks (TTN) can be 

trained as Machine Learning (ML) 
classifiers.

• Classical data samples mapped to 
represent a separable quantum state ϕ(x).

• Supervised Learning: teach the TTN 
how to classify each sample, following the 
decision function:

f x = W ∙ ϕ(x)

• Eventually, the TTN architecture can 
encode the learned information
representing a quantum entangled state.



TTN inference on FPGA

TTN

• Optimized learning: SVD, bond 

dimension tuning

• Safe pruning post-training: 

entropy and correlation.

• Linear algebra: only tensor 

contraction operations.

• Highly parallelizable inference 

algorithm.

• Programmable hardware, 

extremely versatile.

• Well suited for parallel 

computation.

• Limited resources, need for 

architecture compression.

• Achievable ultra-low latency.

FPGA

• Compressed architectures: 

optimal exploitation of  FPGA 

resources.

• Performances comparable to 

classic ML methods.

• Sub-microsecond latency: 

deployable for online processing.

TTN on FPGA



TTN inference on FPGA

• Task: binary classification.

• Datasets: Iris, Titanic for benchmarking and 
LHCb open data for physics case.

• Architectures: several combinations of  
hyperparameters, number of  features and 
feature mappings tested.

• Software: successfully trained several 
architectures.

• Hardware: inference offloaded in FPGA and 
validated.

https://www.kaggle.com/datasets/uciml/iris
https://www.kaggle.com/c/titanic/data


Inference in hardware
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1. Stream of  data that needs to be 

classified is sent to the FPGA.

2. Feature mapping is applied on input 

data.

3. Full contraction with the TTN 

architecture.

4. Retrieve final probability and classify 

sample. Single node contraction: implement this operation 

with different degrees of  parallelization to trade-off  

between resources and latency.

Repeat for each node and layers in the tree, executing 

independent computations parallelly.



FPGA resources

• Digital Signal Processors (DSP): 
units that perform arithmetic 
operations inside FPGAs.

• Read-Only Memory (ROM): 
memory blocks that can be 
configured and read from internal 
logic.

• Look-Up Tables (LUT): necessary 
to implement complex functions with 
finite precision.

Used in the definition of  the single node contraction
to multiply 16-bit numbers. 

The trained weights of  TTNs are written on FPGA 
register blocks, stored in memory and read by the 
logic for each operation. 

Used for building the static function needed for the 
input feature mapping.



Full Parallel implementation

Maximize number of  DSPs used and minimize total 

algorithmic latency



Partial Parallel implementation

Reuse some of  the DSPs, with a resulting increase 

in latency.



Latency



Resources



Quantization



Inference validation

Titanic [2,4,8,1], N=8, 100 samples LHCb [2,4,8,16,1], N=16, 500 samples



Conclusions
• Validated VHDL Firmware for 

TTN inference on FPGA with 
different degrees of  
parallelization.

• Deterministic projections of  
resources and latency values for 
different TTN architectures.

• Exactely reproduced the 
behaviour of  the b-tagging 
classifier studied in:

Felser, T., Trenti, M., Sestini, L. et 
al. npj Quantum Inf 7, 111 (2021), 
Quantum-inspired machine 
learning on high-energy physics 
data

https://doi.org/10.1038/s41534-021-00443-w
https://doi.org/10.1038/s41534-021-00443-w
https://doi.org/10.1038/s41534-021-00443-w


Possible future prospects

Borella L., Coppi A., Pazzini J. et al., 
Quantum machine learning classifiers implemented on 
FPGA for ultra-low latency applications. 
ICHEP 2024: https://indi.to/YXJT9

• Explore different TN examples (MPS, MERA, PEPS etc.) and tasks.

• Improve firmware with additional trade-off  between latency and resource consumption.

• Move the project to higher level programming language (e.g. from VHDL to HLS4ML).

• Hardware inference on Versal AI Engines and compare with current implementation.

• Consider possibility of  training on FPGA and possible applications.

Borella L., Coppi A., Pazzini J. et al., 
Ultra-low latency quantum-inspired machine learning 
predictors implemented on FPGA arXiv:2409.16075v2

https://indi.to/YXJT9
arxiv:2409.16075v2


Thank you for your attention!
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