
IRIS-HEP Fellowship Presentation:

Adding RNTuple to the 
Analysis Grand Challenge

Fellow: Giedrius Juškevičius

Mentor: David Lange

2024-09-18



The bigger picture
• The High-Luminosity Large Hadron Collider (HL-LHC) project aims to 

crank up the performance of the LHC in order to increase the 
potential for discoveries after 2029. 

• The objective: to increase the integrated luminosity by a factor of 10 
beyond the LHC’s design value.

• The higher the luminosity, the more data the experiments can gather 
to allow them to observe rare processes.

• However, analysis workflows commonly used at the LHC experiments 
do not scale to the requirements of the HL-LHC.

• To address this challenge, the IRIS-HEP software institute started the 
“Analysis Grand Challenge” (AGC) project to optimize the data 
pipeline. 



Scope of my task,
which includes using these Python tools:
uproot, Awkward Array, coffea

AGC pipeline and scope of the task

Source: https://agc.readthedocs.io/en/latest/#

The Analysis Grand Challenge (AGC) is about performing the last 
steps in an analysis pipeline at scale to test workflows envisioned 
for the HL-LHC. This includes:
• columnar data extraction from large datasets,
• processing of that data (event filtering, construction of 

observables, evaluation of systematic uncertainties) into 
histograms,

• statistical model construction and statistical inference,
• relevant visualizations for these steps,
all done in a reproducible & preservable way that can scale to HL-
LHC requirements.

https://agc.readthedocs.io/en/latest/


Columnar data storage

Columnar data storage (ROOT data format)*

CMS detectorLHC
Uproot (Python)

Coffea (Python)
Basic tools and wrappers for enabling not-too-alien syntax
when running columnar Collider HEP analysis.

Uproot can access data in ROOT files
without a dedicated C++ ROOT compiler.

* ROOT: C++ interpreter and data format developed by CERN - both of them have the same name. 

A data format developed by CERN, designed
to efficiently store large amounts of data
and support common operations on it.

For 25+ years, columnar data was structured in TTree format. 
RNTuple is a redesigned I/O subsystem aiming to:
• Reduce disk and CPU usage for the same data content;
• Be supported by modern hardware (built for multi-

threading and async I/O);
• [other more]…

Abstraction 
level

Criteria of my current task:
• uproot and coffea (was not able to continue) 

workflows should support RNTuple data files 
without errors;

• After comparing TTree and converted RNTuple files, 
data should not be corrupted;

• RNTuple workflow performance should be 
compared to TTree;

• Found issues should be documented for the team.



Technical steps

• Started with already existing Jupyter notebook workflow in Github, which works 
with TTree without issues; (Github link: agc-coffea-2024.ipynb)

• Used RNTuple files on already existing TTree analysis workflow;

• Setup loading RNTuple files while using two approaches: uproot and coffea;

• Eventually, the coffea approach was blocked because Dask is not yet supported 
by uproot’s RNTuple interface.

• Created our own RNTuple files with ROOT instead of using preexisting ones;

• Main focus was put on uproot approach; multiple problems related to RNTuple
were found; time was spent debugging, documenting and solving these problems 
in uproot repository;

• After solving critical bugs, multiple tests were created to compare the operation 
performance between TTree and RNTuple files when using uproot.

https://github.com/iris-hep/calver-coffea-agc-demo/blob/main/agc-coffea-2024.ipynb


Tools used

• Using external computing resources: Coffea Casa server

• Easily managing and sharing code results: Jupyter Notebooks

• Loading and analyzing ROOT data: Coffea, Awkward array, Uproot

• Visualizing data for easier debugging: matplotlib, PyQT5

• Creating RNTuple files from TTree: LXPLUS server, ROOT

• Managing different versions of code and contributing: git, Github

• Sharing code snippets more easily: Github gists



Error analysis examples

When visualizing data match results for TTree and RNTuple, 
it became clear that bug is related to clusters (there are 7 
clusters in the example above).

After RNTuple file reading failure, failing and non-
failing files where compared byte by byte. This helped 
to understand the cause of error.



Issues found in uproot’s RNTuple object

• While using Coffea, RNTuple object was missing some keys() arguments (solved)

• Dask is not supported by RNTuple interface yet (RNTuple blocker)

• RNTuple object has no attribute 'num_entries’ (solved in draft PR from the past)

• Data integrity was lost when loading arrays from multiple arrays (solved)

• Uproot file loading fails when using RNTuple file created with recent master ROOT 
(issue created)

https://github.com/scikit-hep/uproot5/pull/1285
https://github.com/scikit-hep/uproot5/pull/1250
https://github.com/scikit-hep/uproot5/pull/1285
https://github.com/scikit-hep/uproot5/issues/1288


Performance test results (uproot scope)

• Notebook link: .../calver-coffea-agc-demo/.../ttree_and_rntuple_comparison.ipynb

Operation RNTuple TTree

load 24 arrays while using filter name 0.902 1.720

load all arrays 4.629 46.538

load all arrays while using filter name 4.476 52.715

load one array while using filter name 0.157 0.250

load arrays for each key 54.289 20.028

load file 0.001 0.303

Total 64.454 121.553

Table 1. Execution duration comparison for various 
operations (in seconds) 

(Not recommended operation,
because currently it is very
slow.)

def load_arrays_for_each_key(events):
for key in events.keys():

events.arrays(filter_name=[key])[key]

https://github.com/giedrius2020/calver-coffea-agc-demo/blob/from_ttree_to_rntuple_analysis/ttree_and_rntuple_comparison.ipynb


Potential next steps

• RNTuple's data integrity must be ensured with each new ROOT 
release;

• The support of Dask and coffea is required to distribute computations 
across computer clusters when using RNTuple;

• Performance testing should be done in the Dask/coffea scope when 
using RNTuple;

• The use cases of physics analysis should be examined to create 
additional performance tests within the scope of uproot.



Questions



References

• https://cmsexperiment.web.cern.ch/detector/identifying-tracks

• https://github.com/iris-hep/analysis-grand-
challenge/blob/main/analyses/cms-open-data-
ttbar/ttbar_analysis_pipeline.ipynb

• https://indico.cern.ch/event/1168602/contributions/4907387/attach
ments/2456778/4210978/Uproot.pdf

• https://coffeateam.github.io/coffea/

https://cmsexperiment.web.cern.ch/detector/identifying-tracks
https://github.com/iris-hep/analysis-grand-challenge/blob/main/analyses/cms-open-data-ttbar/ttbar_analysis_pipeline.ipynb
https://indico.cern.ch/event/1168602/contributions/4907387/attachments/2456778/4210978/Uproot.pdf
https://coffeateam.github.io/coffea/

