Analysis Grand Challenge with ATLAS PHYSLITE data

Denys Klekots

(IRIS-HEP fellow)
denys.klekots@gmail.com

Supervisors:
Vangelis Kourlitis
Alexander Held
Matthew Feickert

Outline

- ■Analysis Grand Challenge (AGC)
- ☐ Input data in the PHYSLITE format
- □ Data retrieval from the file
- \square Analysis of the $t\bar{t}$ pair production
- Parallel computing
- Histogram results
- □Statistical inference
- ☐ Final histograms
- Project results and conclusions

Analysis Grand Challenge (AGC)

- □ Includes developing technologies envisioned for HL-LHC.
- □Kind of benchmark to ensure that different pieces of software work fine together.
- Organized by Institute for Research and Innovation in Software for High Energy Physics (IRIS-HEP)

Input data in the PHYSLITE format

■ATLAS releases the 2015+2016 physics proton—proton collision data in PHYSLITE format for research

- >Accompanied by "an appropriate set of simulated Monte Carlo samples"
- >Distributed by opendata.cern.ch, support material at opendata.atlas.cern
- ■The PHYSLITE format is optimized to decrease disk space and developed to meet the demands of HL-LHC
 - >Unskimmed and monolithic
 - ➤ Contains already calibrated objects

Target size	MC	Data
PHYSLITE	12	10

kB per event

Data retrieval from the file

- COFFEA Columnar Object Framework For Effective Analysis
 - ➤ A python package for scientific computations
 - ➤ Basic tools and wrappers for enabling nice functionality running columnar Collider HEP analysis.
- □ Contains the schema which allows reading PHYSLITE format file and turning it into a Python awkward array format.

Event selections for the $t\bar{t}$ analysis

- ☐ The following event selections were applied:
 - ➤ Exactly one charged lepton
 - ➤ At least four quark jets
 - > Leptons kinematic variables:
 - $p_t > 30 \, GeV$
 - $\eta < 2,1$
 - ➤ Quark jets kinematic variables:
 - $p_t > 25 \, GeV$
 - $\eta < 2.4$

Observable variables

m_{bii} - trijet mass

- Addition requirements: least 2 b-tagged jets in event
- □Combination of jets in all possible groups of three
- □ Pick the group with the max btag variable
- □ Calculate the invariant mass of that group of three jets

H_t - scalar sum of jets p_t

- ■Addition requirements to have exactly one b-tagged jet in event
- Calculate the scalar sum of p_t for all jets in the event

Parallel computing

- ☐ Input data is split between many similar PHYSLITE files.
- Coffea allows the splitting of workflow into chunks and processing them in parallel.
- □Results from each chunk are aggregated into a single histogram.
- ☐ The coffea-opendata.casa cluster was used for this project.

Histograms plotting

Example 1 Statistical model

- □Cabinetry is the Python package, making it easier for an analyzer to run their statistical inference pipeline.
- ■It takes the histograms and their variations for multiple observables as input.

☐ The statistical model is configured in the file.

AGC final histograms

Project results and conclusions

- ☐ The version of AGC with ATLAS PHYSLITE data format was implemented.
- ☐ The code developed was well documented and can serve as an example of how one can use PHYSLITE in their analysis.
- The implemented code publicly available on the following repositories:
 - ➤ My repository https://github.com/Denys-Klekots/PHYSLITE_AGC_2024
 - ➤ IRIS-HEP fork https://github.com/iris-hep/agc-physlite

Thank you for your attention