Computing performance from underground physics domain

Eunju Jeon Center for Underground Physics, IBS Oct 9, 2024

Simulation issues in the rare event searches like dark matter, 0 ββ, CE NS

- Low energy backgrounds (<10MeV): we need reliable background simulations covering different physics scales
	- MeV-scale (nuclear physics): Radioactive decay of contaminants
	- keV-scale (atomic physics): X-ray emission during atomic de-excitation
	- eV-scale (solid state physics): Scintillation photon production, electron/hole-pairs, phonons in the detector
- There was a workshop, VIEWS2024, for users who utilize Geant4 for those simulations
- This presentation focuses our work on the low-energy background simulations for rare events searches at CUP

Validation for the migration to Geant4 v11 energy range 0-100 keV

For gammas 1keV to 100keV

For electrons 1keV to 100keV

Eunju Jeon, IBS CUP 29th Geant4 Collaboration Meeting @Catania, 7-11 Oct 2024

• It is well known that the relationship between the energy of incident particles $(y, e₋)$ and the light yield in NaI(Tl) is not linear

Nonproportionality (nPR) of NaI(Tl)

charged particl Optical photon production Optical photon, $\lambda \gg$ atomic spacing, and treated as waves: Energy absorption by NaI(Tl) subject to reflection, refraction, … via electron Ionization ➔ it takes much CPU time to track all the photons in the simulation We will model the light production as a function of dE/dx of electrons in a given step of the simulation, using the experimentally measured nonproportional light output curve for electrons Δ*E* ^Δ*X*) ^Δ*^E* $L(E) = \Sigma_{steps} f$ $\sqrt{2}$ Step length

Implementation of nPR in the simulation package

- We have measured nPR for gamma rays
- But, when e and γ are emitted together, calibration becomes more challenging ➔ our detector response is a mixture of e-/γ interactions with matter
- It would be ideal if nPR is included in the simulation package \rightarrow we embedded nPR in Geant4 (very preliminary)

Comparison of simulation results applied by the empirical curve and using embedded in Geant4

induced by interacting with materials

- Low-energy X-ray emission lines can be induced by interacting with detector materials, leaving energy deposits in the crystal
	- Lines at 8.038 and 8.905 keV due to Kshell transitions in the copper encapsulator
	- Lines around 35 keV due to K-shell transitions of Ba induced by PMT borosilicate glass when generating 238U from the entire PMT body
- To ensure accurate background modeling, we will include this process for all the detector materials when simulating background sources

Low-energy X-ray emissions

 10^{5}

 10^4 \equiv

 $^{210}Po \xrightarrow{138d} {}^{206}Pb(103 \text{ keV}) + \alpha(5.3 \text{ MeV})$

- Nuclear recoils of Na and I in NaI(Tl) scintillator are wellunderstood and established
- However, nuclear recoil events due to the recoiling of 206Pb from alpha decay of the surface contamination are under study
- We need to understand their quenching effect and plan to apply it to the simulations in the near future

quenching effect Nuclear recoil events

- AMoRE is an experiment to search for neutrinoless double-beta decay
- Water Cherenkov muon detector (WCMD) is used to veto background events induced by cosmic ray muons
- WCMD was constructed using the ParallelWorld library
- Currently, photon simulations are being conducted to study the backgrounds induced by muons using the water Cherekov detector
- Multithreading for photon simulation is under testing ➔ results occasionally save successfully to the ROOT output file but intermittently fail
- We plan to use GPU-based photon simulation to improve speed in the near future

using ParallelWorld library Water Cherenkov detector

- Heavy shield layers such as thick leads are used to minimize the background level
- To ensure sufficient statistical sampling of events inside the lead shield, Geant4's importance biasing is recommended, as it can improve simulation efficiency significantly
- We plan to apply Geant4's importance biasing when simulating gamma interactions with a heavy lead shield for the AMoRE experiment

Background simulation with heavy shield layers

(Birgit Zatschler @VIEWS24)

SuperCDMS lead shield simulation in SuperSim

- Graded lead shield:
- Ultra low background (ULB): 0 - 1 cm $-$ 0.3 Bq/kg
- \triangleright Low background (LB): 1 - 10 cm - 21 Bq/kg
- \triangleright Regular background (RB): 10 - 20 cm $-$ 157 Bq/kg
- Simulating radioactive contaminations inside the lead shield (e.g. ²¹⁰Pb) or in volumes surrounding the lead shield (e.g. ⁴⁰K in Al Radon Barrier) would consume $\sim \mathcal{O}(10k)$ of cpu years.

→ application of Geant4's importance biasing

AMoRE shielding and muon detector system

Eunju Jeon, IBS CUP 29th Geant4 Collaboration Meeting @Catania, 7-11 Oct 2024

Summary

- Background understanding in low-energy region < 10MeV
	- crucial for rare events searches like dark matter, $0\nu\beta\beta$, CE ν NS
	- utilizing Geant4 for simulations to study the backgrounds
- Facilitated migration to version 11
	- compared low-energy background spectra between version 11 and previous versions for migration
- Current work
	- implementing the nonproportionality in NaI(TI) crystals into Geant4-based simulation codes and obtained the preliminary results
	- studying the quenching effect of ²⁰⁶Pb recoil from the alpha decay of surface contamination
- Current testing and optimization
	- testing low-energy X-ray emission lines induced by interacting with nearby detector materials
	- testing multithreading for photon simulations
	- applying Geant4's importance biasing for the gamma background simulations with heavy shielding materials