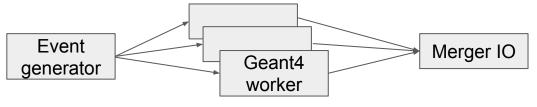
Geant4 performance aspects in ALICE Run3

Sandro Wenzel (CERN), Ivana Hrivnacova (IJClab IN2P3/CNRS)

For the ALICE Collaboration

29th Geant4 Collaboration Meeting,Catania, 9 October 2024

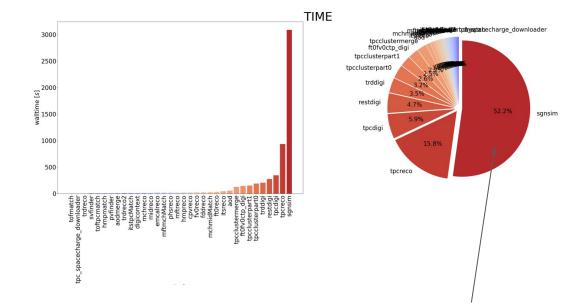

Setting the scene

- 1. ALICE is using Virtual Monte Carlo (VMC) ecosystem for detector simulation
 - User code based on TGeo + VMC API (scoring); No direct coding against Geant4
 - Geant4 can be used as one transport backend (next to Geant3 and FLUKA)
- 2. Geant4 is the default simulation engine since LHC Run3
 - Previously, Geant3 was used
 - Started with v11.0.4, now with v11.2.0
 - These slides reports the updates since the ALICE presentation at the last Geant4 CM
- 3. Geant4 is using the TGeo navigator
 - Translation between TGeo geometry structure to G4 necessary (in-memory tables)
 - Initialization overhead + some small additional runtime cost
 - Currently no VecGeom usage possible since TGeo not yet able to use VecGeom

Main Geant4 configuration choices

- NystromRK4 stepper
- Physics lists:
 - FTFP_BERT_EMV+optical
 - FTFP_BERT_EMV+optical+biasing (INCLXX physics in ITS region)
 - With PAI and SpecialUrbanMsc models in selected regions

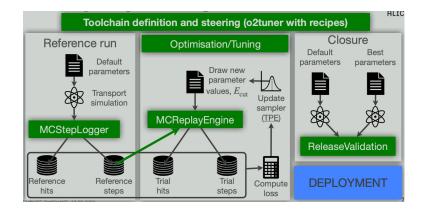
Architectural overview of ALICE detector sim

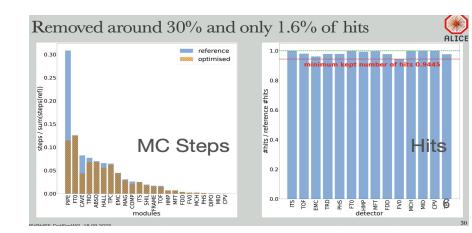


Services operate in parallel and asynchronously

- The o2-sim detector simulator is an executable that spawns various sub-processes as microservices that communicate via messaging
 - Event generator
 - Geant transport workers
 - Data merger for simulation output (final ROOT IO)
- Parallel Geant worker processes collaborate on simulation at the event level
 - Workers transport **sub-events** (or event chunks)
 - Processes are **memory shared due to late fork** (similar to multi-threading mode)
 - Parallelism works seamlessly also for FLUKA and Geant3

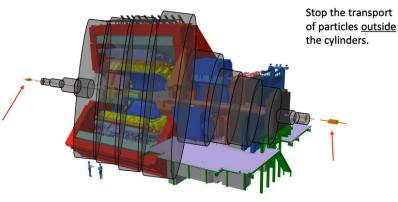
Transport within the whole MC pipeline


- Weight of Geant4 transport in the complete MC pipeline is very important
 - 40 55ish % depending on configuration
- But not the absolute hotspot. Other algorithms play major role as well, somehow limiting the global impact of improvements in transport



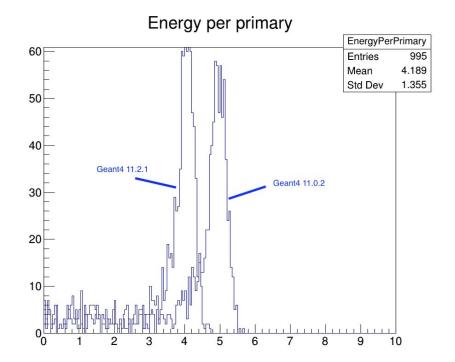
transport

Optimizing MC steps ("process cuts")


- An optimization framework developed which automatically tunes "production cuts" under the constraint to keep hit output constant
 - The talk at CHEP 2023 or HSF meeting
- Achieved 30% reduction in total steps by tuning electromagnetic production thresholds our PIPE geometry
- Integrated in the O2DPG framework
 - Via an external JSON file which is deployed in CCDB (ALICE calibration database) which will overwrite the values hardcoded in O2
- Can be extended to more material parameters

Optimizing MC steps ("geometry region killer")

- Similar project on idea to absorb/kill tracks early once they exit a certain core part of the detector
- Last year summer student project to find optimal arrangement of "track-killing regions"
 - Or in other words a tightly fitting transport region
- Use of same auto-optimization framework to find optimal size of "bounding" cylinders
- Potential for another 10% reduction in steps
- Also integrated in the O2DPG framework



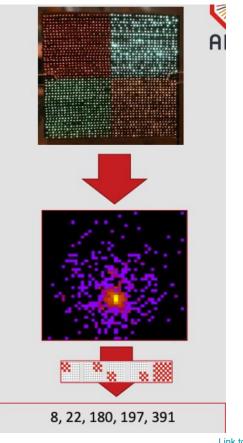
Updates in Geant4 VMC Cuts

- The ALICE requirement to have a possibility to define thresholds in energy was addressed
 - Redundant double conversion Energy => Range => Energy
 - The final energy threshold does not always match exactly this initial value due to the approximations
- in Geant4 v11.2:
 - Added new function G4ProductionCutsTable::SetEnergyCutVector(...) and one more that allow to set productions cuts in energy and so to avoid double conversion energy - ranges energy
- In Geant4 VMC v6.6:
 - A new method G4RangeManager::DefineRegions2() implemented
 - The inconsistencies due to double conversion are removed

Issue With Geant4 11.2

- After switching to 11.2, a Pi0 mass shift was observed in the EMCAL detector, that could be reproduced with a simple macro
- The cause of this shift was identified in a **backward incompatibility** in newly introduced G4TransportationWithMsc process, activated by default in the EMV physics list option
 - When the new process is used, the setting of an extra EM model via G4EmConfigurator fails due to which the SpecialUrbanMscModel tuned for ALICE was not taking into account

Issue With Geant4 11.2 - 2


- The first solution: switch off the new combined process with the UI command:
 - /process/em/transportationWithMsc Disabled
- The complete solution: Geant4 VMC code was adapted to support the explicit setting of an Em model to the G4TransportationWithMsc process, in v6.6.p2
 - Both options then produced the same result
 - From quick tests we did not see a noticeable speed-up with the new process

More ideas that are on the list

- Magnetic field seems expensive for us, so tuning access to it is a natural idea
 - Avoid magnetic field calls whenever possible
 - For instance, check that all materials outside of field are marked as "non-field"
 - Play with parameters for caching etc.
- Stop tracks based on more deeply learned ML criteria
 - kill particles early based on particle properties (location, direction, material, ...)
- VecGeom integration into TGeo or use of native Geant4 geometry
- Still only a wish list due to lack of manpower

FastSim of ZDC

- ALICE is investigating also the use of ML techniques to replace full simulation in the ZDC (zero degree calorimeter)
- When ZDC is switched on, the Geant4 transport time approx doubles - triples due to showering
- Working on ML models that avoid any transport to ZDC at all
 - "Predict ZDC output = 2D image directly based on primary particle properties"
- Good recent progress with GAN models but more work towards production + validation needed
- Technique would allow to include ZDC without additional cost

ZDC has 2D arrangement of optical fiber tubes

Impeding particles induce photon showers which are essentially 2D images with color == number of photons

The idea is to generate these images with ML tools

Link to recent status update