Computing Performance Results and Issues: ATLAS

29th Geant4 Collaboration Meeting, Catania 07-11 October 2024

Marilena Bandieramonte (University of Pittsburgh) on behalf of the ATLAS Simulation Group

Geant4 Simulation in ATLAS

- For the last RUN3 Monte Carlo production (mc23e) ATLAS used:
 - Geant4 10.6.patch03.atlas13
 - It includes (new patches only):
 - c++20, gcc13 support
 - Make Woodcock tracking more robust against corner cases
 - Fix for some rare crashes in hadronic physics (G4AntiNeutron by default unstable)
 - Geant4 LTO-enabled
 - Physics lists: FTFP_BERT_ATL
 - Stepper: ATLASRK4
- Testing now Geant4 11.2.patch02
 - New project on streamlining the adoption of new Geant4 versions

Overview of Run3 MC Campaigns

Run3 MC campaigns, mc23:

- mc23a, for 2022 data (supersedes mc21)
- mc23d, for 2023 data (supersedes mc23c)
- mc23e, for 2024 data

Optimizations put in production at the start of Run3 (mc21)

- EM range cuts
- Neutron and Photon Russian Roulette
- New EMEC Slices variant
- BigLibrary
- G4GammaGeneralProcess
- Magnetic Field tailored switch-off

Optimizations added in mc23a/d:

- VecGeom: new vectorized geometry library, we replace only polycons, cones and tubes (2-3%)
- Frozen Showers update (tuned to the new Geant4 version)
- Woodcock tracking [1]: smart tracking for highly segmented detectors (~17.5%)

New Features:

- Link Time Optimization (LTO): Expands scope of inter-procedural optimization to encompass all objects visible at (final executable) link time => 5% speedup
- Switch-off energy loss fluctuation in Geant4 (on hold)

Geant4 Simulation Optimizations for Run3

New Improvements* that are used in production in the Run3 MC campaigns

Link Time Optimization

Idea: test advanced compiler optimizations, that can lead to non-negligible speed-up factors

- ***** CMS reported \approx 10% speedup in their software with (LTO+PGO)
- * LTO extends the scope of inter-procedural optimizations to include all objects accessible during the linking process.
- * Traditionally, after compiling files separately into object files, the compiler merges them into a single executable during the linking stage.
- * However, with LTO, the compiler can store its intermediate representation, allowing the various compilation units that contribute to the executable to be optimized collectively as a single module during the final linking phase
- * Since Athena code with Geant4 dependencies is statically linked into one shared-object library, LTO can be applied to this library (instead of the executable).
- * Implementing this required only modifications to the CMake configuration of the Athena build process.

*****Status:

* Put in production for the 2024 data taking MC campaign (mc23e): 5% speed-up

Disabling Energy Loss Fluctuation in Geant4

- Idea: Switch-off energy loss fluctuation in Geant4 (measured 3-4% speedup)
- In Geant4 energy loss process calculates continuous and discrete losses **per step**
 - Both are stochastic processes, mean value of **continuous loss** can be calculated from (restricted) stopping power.
 - Statistical fluctuation around this mean from Urban/PAI models in Geant4
- Sampling these models adds (small) compute time per step, but fluctuation can often be ignored **if number of steps is large** in important volumes
- Statistical variation in energy loss over steps dominates per-step fluctuation

- When switching this process OFF ATLAS observed Changes on Egamma energy scale larger than calibration systematic and a higher catastrophic energy loss, with a 1% mismatch for muons with pT>500GeV
 - NOT included in mc23e campaign, but will wait for Geant4 update to enable the switch-off option depending on particle types / detector regions.

Marilena Bandieramonte (University of Pittsburgh)

Ongoing effort

Targeting Run3 MC reprocessing, or future Run3 MC campaigns

High-η particle rejection (ISF Particle Killer)

- Idea: Kill primary particles generating secondaries close to the beam-pipe at \sim 5-6 m
- Many particles in the collision are at high $|\eta|$ (no ID hits) with little energy compared to the calorimeter noise.
- Check if we can kill some particles early on with no or little effect on the simulated energy in the calorimeters to save CPU.
 Reference plots
- Test sample:
 - 5000 events produced with PG (photon)
 - Energy (E): 1 MeV ~ 1 TeV
 - • $\eta \in [4.3, 6]$

- Cutting $\eta > 5.0$ and $E_T < 0.5$ GeV looks promising.
- Further physics precision check is on-going before physics validation.

GPU-friendly EMEC implementation

• Background:

- The as-built EMEC features a complex "Spanish Fan" geometry.
 - Early versions of Geant4 did not support an efficient description of this geometry using the available G4Solids.
 - To implement it, a custom solid was used with algebraic methods.
- *Idea*: Re-implement the EMEC geometry starting from the technical drawings and with standard Geant4 shapes
 - This code will enable portability of the full ATLAS geometry allowing to offload the Simulation jobs to GPUs

- **STATUS:** Implemented by using G4GenericTrap
 - Initial tests in standalone G4 example and in FullSimLight
 - Discovered a bug in the calculation of the Safety distance of the G4GenericTrap (fix available from G4 11.3)
 - Code now integrated in Athena.
 - The next step is to adjust the corresponding sensitive detectors code to align it with the new geometry implementation, enabling the evaluation of physics modelling.
 - Preliminary benchmarks show a **19% speedup**

Use AF3 in the EMEC in FullSim

- Idea: use AtlFast3 to handle low energy e/γ in the EMEC for the Full Simulation workflow
- Motivation: Even after MC23 optimizations, e/γ in EMEC are one of the biggest contributors to the total steps-per-event
 - Similar to Frozen Showers in ATLAS FCAL for low energy e/γ /neutrons
 - \bullet Goal is to find E/ η region where outputs do not differ w.r.t. full Geant4

• STATUS:

- AF3 appears to be precise enough to act as a substitute for G4
 - No significant impact on the shower shapes for E<8GeV, 1.5< η <2.5
 - Preliminary ~10% speed-up for sample in the same eta range

Specialised transport: G4HepEM/AdePT/Celeritas

• Geant4 11 Enhancements:

• Per-particle Specialised Transport:

- Geant4 11 introduces the ability to customize particle transport based on particle type, allowing users to choose actions (such as stepping or parameterization) based on particle energy and location.
- This adds greater flexibility, coherence, and potentially better performance compared to previous methods and hooks.

• G4HepEM:

 A compact Geant4 electromagnetic (EM) library with algorithms and memory layout optimized for high-energy physics (HEP) EM shower development and e-/e+/γ transport, validated against more general Geant4 EM models.

• AdePT and Celeritas:

These frameworks implement full stepping transport loops for $e/e+/\gamma$ particles on NVIDIA (and AMD) GPUs, tailored for HEP use cases involving geometry and physics processes.

• Integration with Athena:

Work is underway to integrate these tools into Athena, using specialized transport to offload e-/e+/ γ particles (e.g., in calorimeters) to the GPU asynchronously while maintaining event boundaries on the host side.

- AdePT/Celeritas in Athena hackathon planned for next week
 - Goal: Integrate Celeritas and AdePT with Athena, so that GPU hits can be passed on to the ATLAS sensitive detectors to be processed and written out to a HITS file. The HITS file can then be processed by the rest of the atlas SW chain.
 - Runtime performance will be assessed on a range of host-device systems and under realistic production conditions.

Benchmarks

Public Plots

The mean CPU time per event simulated in Full Simulation comparing mc20 (Run2 MC Campaign) running at 13 TeV centre-of-mass energy (in red), mc21 (start of Run3 MC Campaign), running at 13.6 TeV centre-of-mass energy (in yellow), mc23c (Run3 MC campaign covering 2023 data taking), running at 13.6 TeV centre-of-mass energy (in light blue) and mc23e (Run3 MC campaign covering 2024 data taking), running at 13.6 TeV centre-of-mass energy (in dark blue) measured in standardised HS23 seconds.

Public <u>Plots</u>

FCAL 7%

Conclusions and outlook

- Run3 Full Simulation runs 1.84 times faster than in Run2!
 - Many interesting ongoing and planned **projects for optimizations** in the Full Simulation Group:
 - Additional 5% speedup from LTO in the latest MC campaign
 - Other optimisations ongoing
 - High-η particle rejection (ISF particle killer) (few % expected)
 - GPU-friendly EMEC implementation (expected 19% speedup)
 - G4HepEM library adoption (preliminary tests in Athena ~7-8% speedup)
 - Use AF3 in the EMEC in FullSim (few % expected)
 - Energy Loss Fluctuation OFF (3-5%)
 - Many interesting longer-term developments (please see backup slides):
 - Integration with AdePT/Celeritas
 - Quantized State Stepper (QSS) integration and testing
 - ML Correction for Aggressive Range Cuts
 - G4 Field parameter tuning

Thanks for your attention!

Marilena Bandieramonte marilena.bandieramonte@cern.ch

Backup slides

ATLAS detector in Run3

Marilena Bandieramonte (University of Pittsburgh)

ATLAS detector in Run3 - Calorimeters

ATLAS detector in Run3: Muons System

- Looking from a different perspective (time spent per sub-detector and per particle type) gives us more insights:

Improvements over different campaigns

- mc20, MC reprocessing campaign for Run2:
 - TRT range cut (sets the range cut for e-/e+ in the TRT volumes filled with Xenon)
 - Frozen Showers
- mc21, MC campaign for start of Run3: (in addition to mc20)
 - EM range cuts: expect to reduce the n. of low energy electrons
 - PRR: expect to reduce the n. of tracked photons
 - NRR: expect to reduce the n. of tracked neutrons
 - EMEC slices: improve the CPU time in the EMEC
 - Big Library: improve overall the Full Simulation Time
 - MagField Off: improve transport in magField
 - G4GammaGeneralProcess: improve time spent to transport gammas
 - BeamPipe killer: kills particles at eta>5.5, that do not make to the detector
- mc23c (in addition to the mc21), MC campaign for Run3:
 - Woodcock Tracking: improve timing of gammas in the EMEC
 - VecGeom: Improve CPU time for detectors that use Polycons, Tubes and Cones

 Looking from a different perspective (time spent per sub-detector and per particle type) gives us more insights:

Changes affecting all subsystems

- mc20, MC reprocessing campaign for Run2:
 - TRT range cut (sets the range cut for e-/e+ in the TRT volumes filled with Xenon)
 - Frozen Showers
- mc21a, MC campaign for start of Run3: (in addition to mc20)
 - EM range cuts: expect to reduce the n. of low energy electrons
 - PRR: expect to reduce the n. of tracked photons
 - NRR: expect to reduce the n. of tracked neutrons
 - EMEC slices: improve the CPU time in the EMEC
 - Big Library: improve overall the Full Simulation Time
 - MagField Off: improve transport in magField
 - G4GammaGeneralProcess: improve time spent to transport gammas
 - BeamPipe killer: kills particles at eta>5.5, that do not make to the detector
- mc23c (in addition to the mc21), MC campaign for Run3:
 - Woodcock Tracking: improve timing of gammas in the EMEC.
 - VecGeom: Improve CPU time for detectors that use Polycons, Tubes and Cones

- Looking from a different perspective (time spent per sub-detector and per particle type) gives us more insights:

Changes impacting mainly EM calorimeters

- mc20, MC reprocessing campaign for Run2:
 - TRT range cut (sets the range cut for e-/e+ in the TRT volumes filled with Xenon)
 - Frozen Showers
- mc21a, MC campaign for start of Run3: (in addition to mc20)
 - EM range cuts: expect to reduce the n. of low energy electrons
 - PRR: expect to reduce the n. of tracked photons
 - NRR: expect to reduce the n. of tracked neutrons
 - EMEC slices: improve the CPU time in the EMEC
 - Big Library: improve overall the Full Simulation Time
 - MagField Off: improve transport in magField
 - G4GammaGeneralProcess: improve time spent to transport gammas
 - BeamPipe killer: kills particles at eta>5.5, that do not make to the detector
- mc23c (in addition to the mc21), MC campaign for Run3:
 - Woodcock Tracking: improve timing of gammas in the EMEC
 - VecGeom: Improve CPU time for detectors that use Polycons, Tubes and Cones

- Looking from a different perspective (time spent per sub-detector and per particle type) gives us more insights:

Changes targeting the EMEC

- mc20, MC reprocessing campaign for Run2:
 - TRT range cut (sets the range cut for e-/e+ in the TRT volumes filled with Xenon)
 - Frozen Showers
- mc21a, MC campaign for start of Run3: (in addition to mc20)
 - EM range cuts: expect to reduce the n. of low energy electrons
 - PRR: expect to reduce the n. of tracked photons
 - NRR: expect to reduce the n. of tracked neutrons
 - = EMEC slices: improve the CPU time in the EMEC
 - Big Library: improve overall the Full Simulation Time
 - MagField Off: improve transport in magField
 - G4GammaGeneralProcess: improve time spent to transport gammas
 - BeamPipe killer: kills particles at eta>5.5, that do not make to the detector
- mc23c (in addition to the mc21), MC campaign for Run3:
 - Woodcock Tracking: improve timing of gammas in the EMEC
 - VecGeom: Improve CPU time for detectors that use Polycons, Tubes and Cones

Geant4 Simulation Optimizations for Run3

VecGeom: vectorized Geometry

New and optimised implementation of geometrical shapes, designed to take advantage of explicit and implicit vectorisation:

- we replace only polycons, cones and tubes

measured on 500 ttbar events in the Atlas software framework (Athena)

VECGEOM ALONE

BNL Cluster, 1000 Jobs	Walltime,s	sigma	Speedup	Job ID
100 tt-bar events/job			CPU time	
Athena 22.0.47 (baseline)	280	22.8	-	<u>27857092</u>
Athena 22.0.63 with VecGeom (no BigLibrary)	263	23	-6.1%	<u>3137986</u> <u>1</u>
Athena 22.0.63 with VecGeom (no BigLibrary) +Run3Opt	195	15.9	-30.4%	<u>31379871</u>

VECGEOM ON TOP OF THE BIG LIBRARY

BNL Cluster, 1000 Jobs	Walltime,s	sigma	Speedup	Job ID
100 tt-bar events/job			CPU time	
Athena 22.0.47 (baseline)	280	22.8	-	<u>27857092</u>
Athena 22.0.67 "out the box" (BigLibrary only)	270	21.3	-3.6%	<u>31366397</u>
Athena 22.0.67 "out the box" (BigLibrary only) +Run3Opt	189	15.7	-32.5%	<u>31366406</u>
Athena 23.0.7 "out the box" (BigLibrary + VecGeom)	252	21.6	-10%	<u>31352919</u>
Athena 23.0.7 "out the box" (BigLibrary + VecGeom)+Run3Opt	185	15.8	-33.9%	<u>3135293</u> 2

🗙 P F R Ben Morgan

Woodcock tracking

- Reduce the **number of steps for gammas** in highly segmented detectors (e.g. EMEC), where the geometric boundaries limit the step, rather than the physics
- Perform the transport in a geometry with no-boundaries made of the densest material (i.e. Pb)
- The interaction probability is proportional to the cross-section ratio between the real material and the "fake" one
- Integrated in FullSimLight and in Athena
 - Shows a ~17.5% performance gain when using *Woodcock-tracking* of gamma photons in the EMEC detector region on top of the gain already provided by the *Gamma-general* process
 - Full physics validation successful and in production for Run3!

		FTFP_BERT_ATL	$_$ WDCK- $GammaGeneral$	$_WDCK Woodcock(EMEC)$
#secondary	γ	$3.054e{+}05$	3.06e+05	3.062e+05
	e^-	6.240e + 05	6.204e + 05	6.201e + 05
	e^+	2.186e+04	2.19e+04	2.193e+04
#steps	charged	$3.548e{+}06$	3.548e+06	$3.550e{+}06$
	neutral	8.501e + 06	8.464e + 06	4.215e+06

FTFP_BERT_ATL	$_$ WDCK- $GammaGeneral$	$_$ WDCK $Woodcock($ EMEC $)$
base line	[2 - 4] %	[10 - 14] %

Geant4 intrinsic improvements

Geant4 static linking (Big Library)

Combine all Athena libraries/components that use Geant4 into a *single shared library* linking to Geant4 *static libraries*

G4GammaGeneralProcess

A single general process for gammas that interacts with the Stepping Manager:

- significantly reduce the number of operations needed

-4.3%

measured on 100 ttbar events in Athena

M. Bandieramonte [ATLASSIM-4791] [ATLPHYSVAL-818]

Reduce the number of steps/operations

Magnetic Field Tailored Switch-off

Speedup observed when switching off magnetic field in LAr calorimeter (except for muons) without affecting shower shapes

- Detailed studies showed smaller null-field area needed
 - ~1-2% speedup for full ttbar events

EM range cuts

Explicitly activated for Compton, photoelectric, pairproduction Avoid creating secondaries and transporting a gamma if its energy is below a certain value

Randomly discard particles below the energy threshold and weight accordingly the surviving ones

```
10% speedup with 2 MeV threshold
```

M. Muskinja [SIM-2019-001] [ATLASSIM-3924] [ATLPHYSVAL-632]

Geometry optimizations

New EMEC custom solid variants

- Wheel the default LArWheelSolid with G4Polycone
- Cone improved LArWheelSolid with G4ShiftedCone - outer wheel divided into two conical-shaped sections
- **Slices** new LArWheelSliceSolid each wheel is divided into many thick slices along Z axis:
 - best candidate: 5-6% speedup

VecGeom

New and optimised implementation of geometrical shapes, designed to take advantage of explicit and implicit vectorisation:

- we replace only polycons, cons and tubes

-2-3% **

measured on 500 ttbar events in Athena

Ben Morgan [ATLASSIM-4750] [ATLPHYSVAL-831]

M. Bandieramonte, University of Pittsburgh

Longer terms effort

G4 Field parameter tuning

Goal: Find the optimal values of the in-field tracking parameters for physics performance and CPU savings Inspired by CMS efforts to optimize the below parameters

- DeltaIntersection: accuracy of intersection with boundary volume
- Epsilong_max: relative accuracy for endpoint of 'ordinary' integration step (delta_one_step / step_size)
- DeltaChord: approximation of curve with linear sections
- MaxStep: maximum step length

Magnetic field parameters	Strict	Intermediate	Loose
DeltaIntersection (mm)	10 ⁻⁶	10 ⁻⁴	0.01
Epsilon_max	10 ⁻⁴ /step_size	10 ⁻³ /step_size	0.1/step_size
DeltaChord (mm)	10 ⁻³	$2 \cdot 10^{-3}$	0.1
MaxStep (mm)	150	50	150

Quantized State Stepper (QSS)

Quantized State System (QSS): numerical

methods to solve the ordinary differential equations that describe the movement of particles in a field

- QSS methods **discretize the system state** variables as opposed to the traditional methods that discretize the time

- This method handles very efficiently **discontinuities** in the simulation of continuous systems

Reference: Efficient discrete-event based particle tracking simulation for high energy physics

STATUS

- Successfully ported QSS stepper from Geant4 v10.5 to v10.7.2
 - Test within the ATLAS geometry:
 - Results using the N02 model qualitatively indistinguishable compared to those using the G4DormandPrince745
- Integrated in **FullSimLight**
 - ATLAS geometry & magnetic field map
 - Performance profiling ongoing

R. Castro, L. Santi, Leandro Gómez Vidal, Alejandro Mignanelli: [link]

ML Correction for Aggressive Range Cuts

Increased range cuts can **reduce the number of photons**, thus reduce the transportation steps and **increase computational performance**

EM calorimeters dominate the simulation load due to low-energy photons from electron scattering, ~90% of these are transportation processes

The ML correction applied as a post-processing step utilizing **batch processing** and **accelerator hardware** achieving ~15% **speed up** in example geometries – ML inference time negligible compared to simulation time reduction.

Solution to be implemented/tuned for the ATLAS EMEC

ML-based correction

Classification NN to learn correction weights [ref]

Re-weight the **alternative** simulation to the **nominal** one by learning multi-dimensional weights considering all cell energy deposits

$$r(\vec{x}) = \frac{p(\vec{x} \mid \theta_p)}{q(\vec{x} \mid \theta_q)}$$

