October 9, 2024

29th Geant4 Collaboration Meeting

N. Bartosik (a, b) for the Muon Collider Physics and Detector Group

(a) UPO (Italy) (b) INFN Torino (Italy)

Introduction: Muon Collider

Muon Collider combines advantages of the two types of machines: **high precision** of e^+e^- colliders + **high energy reach** of pp colliders

- like e^{\pm} , μ^{\pm} are elementary particles \rightarrow creating "clean" collisions
- \times 200 higher mass $\rightarrow \times 10^9$ less synchrotron radiation losses \hookrightarrow can fit in a compact ring (27 km circumference for $\sqrt{s} = 14$ TeV)

Nazar Bartosik

Muon Collider combines advantages of the two types of machines: **high precision** of *e*⁺*e*⁻ colliders + **high energy reach** of *pp* colliders

- like e^{\pm} , μ^{\pm} are elementary particles \rightarrow creating "clean" collisions
- \times 200 higher mass $\rightarrow \times 10^9$ less synchrotron radiation losses \rightarrow can fit in a compact ring (27 km circumference for $\sqrt{s} = 14$ TeV)

At $\sqrt{s} \ge 3$ TeV Muon Collider is the most energy efficient machine providing rich physics from $\mu^+\mu^-$ collisions and VBF processes

Current target of our studies: $\sqrt{s} \ge 10$ TeV Muon Collider

Introduction: Muon Collider

Muon Collider combines advantages of the two types of machines: **high precision** of *e*⁺*e*⁻ colliders + **high energy reach** of *pp* colliders

- like e^{\pm} , μ^{\pm} are elementary particles \rightarrow creating "clean" collisions
- \times 200 higher mass $\rightarrow \times 10^9$ less synchrotron radiation losses \rightarrow can fit in a compact ring (27 km circumference for $\sqrt{s} = 14$ TeV)

At $\sqrt{s} \ge 3$ TeV Muon Collider is the most energy efficient machine providing rich physics from $\mu^{+}\mu^{-}$ collisions and VBF processes

Current target of our studies: $\sqrt{s} \ge 10$ TeV Muon Collider

mitigation of the **Beam Induced Background** (BIB) The greatest experimental challenge: part of the μ^{\pm} decays reaching the detector

Propagation of μ ± beams in the accelerator lattice

Geant4 detector simulation at the Muon Collider

Nazar Bartosik

Introduction: Muon Collider

100.0

We need to tune our detector design and reconstruction algorithms to **cope with BIB**

Nazar Bartosik

- The project started with very limited manpower
- \rightarrow focus on a simulation workflow that is fast to set up and easy to modify for different detector prototypes

Scope of the simulation

We need to tune our detector design and reconstruction algorithms to **cope with BIB**

Nazar Bartosik

Roughly 4×10^8 particles from μ^{\pm} decays arriving to the detector in a single bunch crossing (BX)

Detector design

We have 2 detector proposals with dimensions similar to that of the CLIC detector

with main differences in the magnet layout and calorimeter technologies

Nazar Bartosik

BIB simulation stages

BIB simulation is performed in two distinctive steps separated by the outer surface of the MDI

BIB simulation stages

BIB simulation is performed in two distinctive steps separated by the outer surface of the MDI

BIB particles have several characteristic features

1. Predominantly very soft particles uniformly distributed in space \rightarrow not like signal-like tracks or jets → conceptually different from pile-up contributions at the LHC

QGSP_BERT_HP model should be used to properly describe all the particle interactions

Geant4 detector simulation at the Muon Collider

Nazar Bartosik

BIB properties

BIB particles have several characteristic features

- **1.** Predominantly very soft particles
- $\mu^+\mu^-$ collision time spread: $\leq 20 \text{ ps}$ → allows out-of-time BIB rejection

Nazar Bartosik

BIB properties

Geant4 detector simulation at the Muon Collider

11

BIB particles have several characteristic features

- **1.** Predominantly very soft particles uniformly distributed in space \rightarrow not like signal-like tracks or jets → conceptually different from pile-up contributions at the LHC
- **2.** Significant spread in time (few ns + long tails up to a few μs) $\mu^+\mu^-$ collision time spread: $\leq 20 \text{ ps}$ → allows out-of-time BIB rejection
- **3.** Strongly displaced origin along the beam line entering detector at a shallower angle → affects hit-cluster shapes + time of flight

BIB properties

The fastest simulation is the one that is not run at all

- Discard BIB particles with arrival time ≥ 25 ns 1. typical integration times in readout electronics: ~ 1-10 ns
 - hits created by such particles would not contribute to the digitized signal

Computing-load reduction

Computing-load reduction

The fastest simulation is the one that is not run at all

- Discard BIB particles with arrival time ≥ 25 ns typical integration times in readout electronics: ~ 1-10 ns
 - hits created by such particles would not contribute to the digitized signal
- Discard neutrons with momentum ≤ 150 MeV they are too slow to reach calorimeter cells within the typical readout time window of ~10 ns we can safely use the faster **QGSP_BERT** model

Computing-load reduction

The actual spectrum of 2×10⁸ particles entering our Geant4 simulation

~50X less **CPU-time**

Nazar Bartosik

Simulation metrics

We don't run **Geant4** directly. We interface it via **DD4hep** → only single-threaded mode is available

We parallelize by splitting 1 BX into multiple sub-events and randomly mixing sub-events before overlay

We don't run **Geant4** directly. We interface it via **DD4hep** → only single-threaded mode is available

We parallelize by splitting 1 BX into multiple sub-events and randomly mixing sub-events before overlay

DD4hep (v1.29) \rightarrow Geant4 (v11.2.0)

Simulation of 1 BX on a single thread

Total events	70K
Particles/event	3K
Total CPU time	22 h
RAM	1.4 GB

Geant4 detector simulation at the Muon Collider

Nazar Bartosik

Simulation metrics

→ 5 threads can run in parallel on a machine with 8 GB of RAM

Our current setup works well at the current prototyping stage but will become inefficient in larger-scale simulations in the future

Inefficient use of memory in the single-threaded mode 1. would become a limiting factor in simulations of much larger statistics

Nazar Bartosik

Shortcomings

Our current setup works well at the current prototyping stage but will become inefficient in larger-scale simulations in the future

- Inefficient use of memory in the single-threaded mode 1. would become a limiting factor in simulations of much larger statistics
- 2. Splitting in many sub-events introduces lots of slow I/O during Overlay in particular for calorimeter hits, where contributions in the same cell need to be merged

Shortcomings

Our current setup works well at the current prototyping stage but will become inefficient in larger-scale simulations in the future

- Inefficient use of memory in the single-threaded mode would become a limiting factor in simulations of much larger statistics
- 2. Splitting in many sub-events introduces lots of slow I/O during Overlay in particular for calorimeter hits, where contributions in the same cell need to be merged
- **3.** Optical-photon propagation is completely ignored in calorimeters for the moment would require hardware acceleration to be feasible for detailed readout simulation

Nazar Bartosik

Shortcomings

e⁻ shower in Cherenkov 5×5 mm² crystals of the <u>Crilin</u> ECAL prototype

At Muon Collider we deal with extreme numbers of particles order of 10⁸ particles/event

- We use Geant4 via DD4hep framework for flexible geometry definition that is directly reused in reconstruction
- We care about timing at the level of ~10 ps
- We obtain statistically independent events by splitting and random mixing of simulated sub-events
- Significant performance improvements will be needed in the future for larger statistics and more accurate detector description

