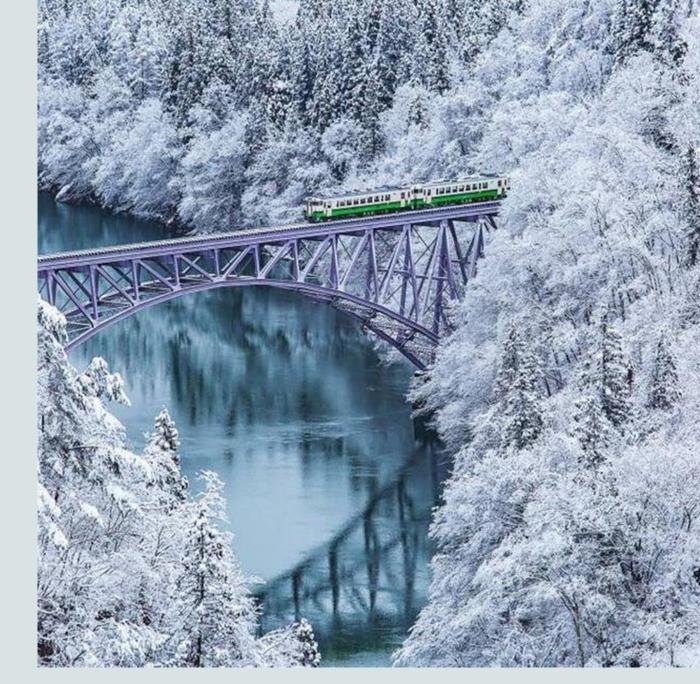


Status of Geant4 EM physics

V. Ivantchenko, CERN & Tomsk State University*

29th Geant4 Collaboration Meeting Catania, Italy, 7-11 Oct 2024

* grant of Government (Agreement No. 075-15-2024-667)



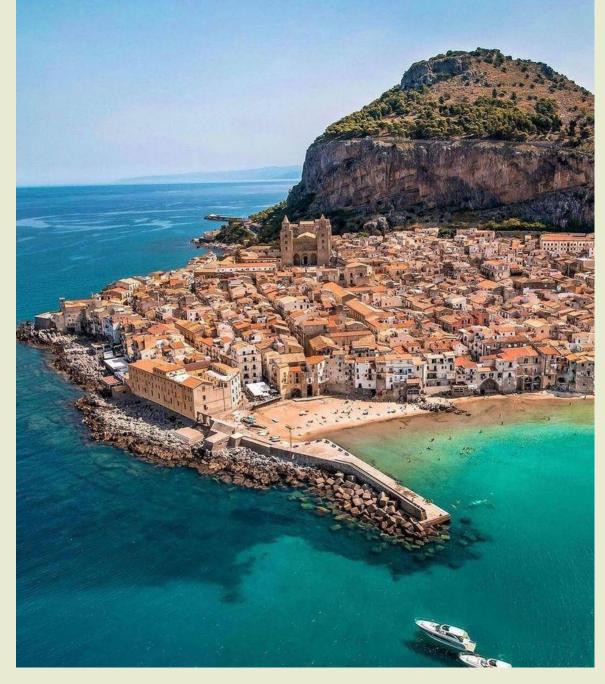
Outline

- Summary on EM progress in 2024
 - Code and data evolution
 - New features

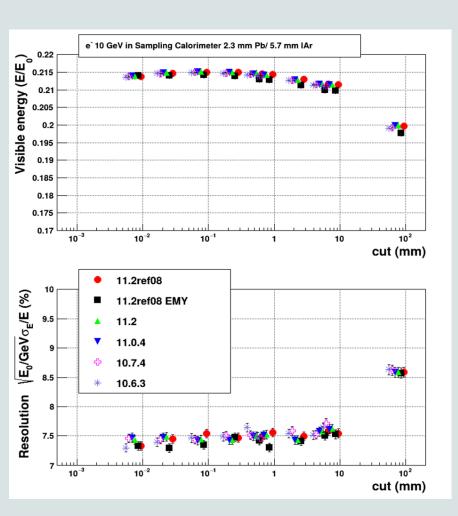
Selected developments

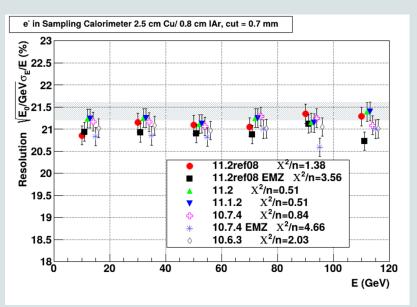
- EM data handling
- ✤ 3-gamma annihilation and positronium
- EPICS-2017 data
- Pending work items for 11.3
- Vision for 2025

Some statistics

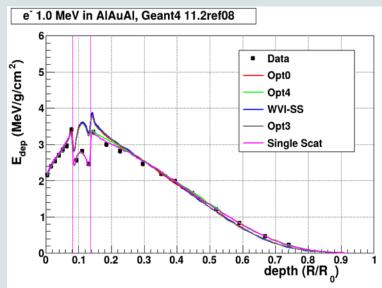

Number of merged MRs after December release 11.1: 104

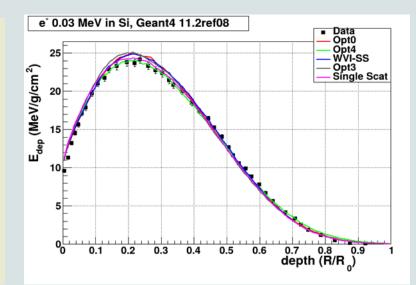
Number of merged MRs after December release 11.1: 84 (Oct 5)


- Materials 6
- Electromagnetic/utils 16
- Electromagnetic/standard 17
- Electromagnetic/muons 4
- Electromagnetic/highenergy 2
- Electromagnetic/lowenergy 6
- Electromagnetic/dna 16
- Electromagnetic/xrays 5
- Optical 2
- Physics_lists/constructors/electromagnetic 10


* New dataset G4EMLOW8.6.1

- Updated MicroElec data
- Fixed X-Ray reflection data
- Added multi-ionization DNA data




Recent validation results

- There is stability in general for EM calorimetry response simulation from 10.6 to 11.3
- The only known unstable EM physics is EMY, which was fixed in 11.2.2

New features prepared for 11.3

- Initializations of EM tables and data structures are thread safe.
- Full implementation of 3-gamma annihilation and positronium production and decay (talk of D. Bernard)
- Full implementation of X-Ray scattering and examples
- Alternative EM processes for exotic particles
- Extension of models and examples for channeling (talk of A. Sytov)
- DNA developments (talk of Tran Hoang)

Main infrastructure change in 2024

 In 2023 we were struggled with the problem of initialization and destroy of shared data in EM models

& Lessons learned:

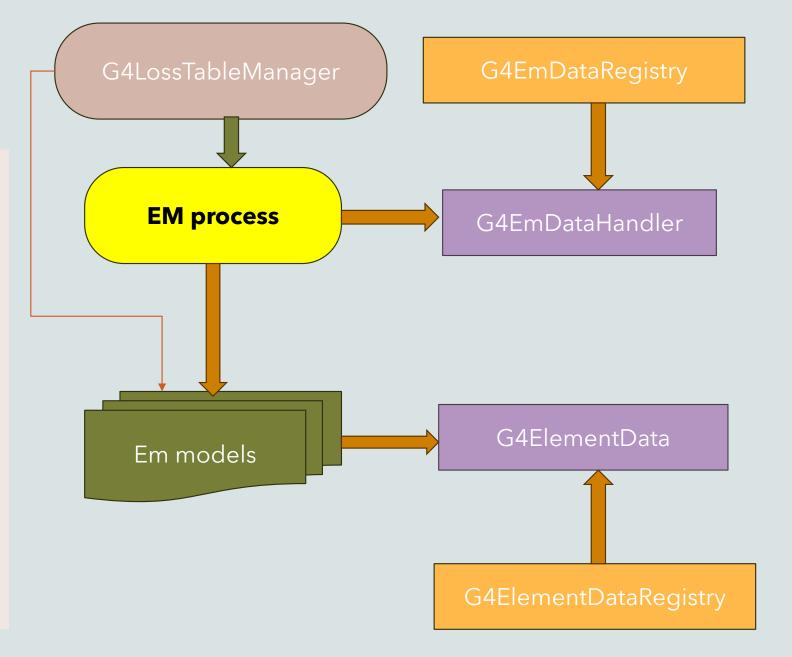
- static data is a very delicate approach should not be used if possible
- Instead of deletion of static data in model or process classes we should use register mechanism allowing to keep shared data until the end of the job

The work was started for 11.2 using G4ElementData structure

- Data may be accessed via name
- Data will be deleted end of job by the dedicated register classes
- ✤ If a dataset accessed via the register class, then this dataset should not be static

EM data handling for 11.3

- Existing G4ElmentDataRegistry
 Keep G4ElementData for EM models
- G4LossTableManager define master thread in constructor

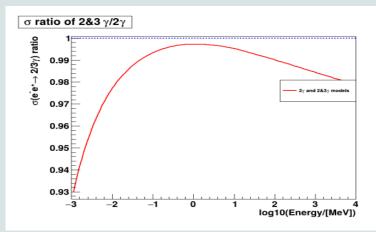

It may be the first working thread

New class G4EmDataRegistry

singleton to keep shared data from
 EM processes

- Physics tables
- EM cross section shape data

this class is responsible for deletion
 of G4EmDataHandlers


Positron 3- gamma annihilation on fly

- Pending project for many years
 - problems in sampling of final state when a positron become lowenergy
- Positron 3-gamma annihilation was developed in the framework of CERM summer school projects
 - Andrei Alkin (2018)
 - HUNG Tsz Hong (2024)
- Design iteration for 11.3 simulation on fly and at rest are fully independent now

✤3-gamma annihilation on fly concerns mainly HEP applications – shower shape may be affected on per mile level

/process/em/lowestTripletEnergy 10 MeV

 $d^2 \sigma^{\gamma \gamma \gamma} / dv_1 v_2$ dependence from γ energy fraction v^{0} 0.9 0.9 0.7 0.6 0.7 0.6 0.7 0.6 0.7 0.6 0.7 0.6 0.7 0.6 0.7 0.7 0.8 0.7 0.9 0.7 0.7 0.8 0.7 0.7 0.8 0.7 0.7 0.8 0.7 0.7 0.8 0.7 0.7 0.7 0.8 0.9 0.70.7

Positron annihilation at rest

- Creation of positronium at rest concerns mainly medical applications
 - * Thanks to contribution from J.Allison, D. Bernard, and I. Semeniouk there is a significant progress in 2024
- A choice of model for sampling of final state is provided via enumerator
 - G4PositronAtRestModelType
 - fSimplePositronium
 - fAllisonPositronium
 - fOrePowel
 - ✤ fOrePowelPolar
- Selection of positronium model
 - /process/em/setPositronAtRestModel Allison variant of selection
 - Simple is the current default annihilation at rest into 2 gamma
 - Allison uses only two gamma Allison model but considers Doppler boarding
 - OrePowell for 2 gamma uses Allison, for 3 gamma OrePowell model (D. Bernard)
 - Quantum entanglement is applied only on 2 first gamma
- Probability of para-/orto-positronium creation and decay defined by G4Material property
 - /material/g4/ortoPositroniumFraction G4WATER 0.05

Other new developments

EPICS2017 data

- Since 11.2 these data for Livermore gamma models
- * Livermore photo-electric model and Rayleigh scattering models are the default in EM Opt0 physics
- ******EPICS2017* cross section for gamma conversion is included into G4BetheHeitler model as an option
 - This model now is not used in any physics configurations but only in tests
- New EM models for exotic particle transport
 - G4DynamicParticleIonisation
 - ✤ G4DynamicParticleMSC
 - G4DynamicParticleFluctuation
 - ✤ G4ParticleDefinition is not used in these models, only G4DynamicParticle data
 - All computation on fly no tables stored
 - G4ChargedUnknownPhysics builder to be added on top of any Physics List

Pending work for 11.3

- For data structure handling check destruction to exclude possible memory leak or double destructions
- Introduce a new EM parameter and UI command /process/em/positron3GammaAnnihilation true
 - should be true for Opt4
 - what about others?
- There is a request from Laszlo Urban to change Urban MSC model
- Address Bugzilla bug reports for EM and problems discussed in the Forum
- Outstanding request to introduce alternative Cerenkov process

Vision for 2025 physics

- It is possible to complete development for parallel initialization of EM physics in 2025
 EM physics should be independent on existence/non-existence of the master thread
- We may introduce a new option on top of any physics configuration to enable triplet processes and other next to leading order corrections
 - This is may be an important addition for precise studies at LHC

This would configure 3-gamma annihilation and other advanced options on top of any EM physics configuration

- Users already can add extra options one by one
- Alternatively, we may provide flags making easy to study EM shower shape on per mile level for HEP
- EPICS2017 cross section is one of such options
- We should not increase number of EM physics configurations beyond Opt4

Vision for 2025 CPU performance improvement

- In recent Geant4 releases we do not see significant speed-up of simulation due to EM physics developments
 - ✤ For standard EM we may speed-up for ~1% due to code optimization
 - Combined processes may improve CPU ~2%
 - DNA and MicroElec code may be improved much more
 - ✤ G4HepEm would be a good alternative and should be better integrated with Geant4
- New hardware or compiler bring more benefits than our efforts to polish the code
 - EL8/EL9 already provide 10% out of the box
 - Risk OS may do factor 2
- My personal point of view on 2025 work plan:
 - ✤Inside Geant4 EM we should be more concern about accuracy of models and develop G4HepEm further
 - *****Speed-up is a problem of an application and is the responsibility of users
 - * we should provide them handles, for example, add a possibility to switch of fluctuations per region

Thank you

