Orthopositronium $\rightarrow 3 \gamma$

Decay at Rest

Denis Bernard, Igor Semeniouk

Laboratoire Leprince-Ringuet (LLR), Ecole Polytechnique & CNRS / IN2P3, France

$Polarization \ ?$

- Orthopositronium spin-one triplet state
- Photons "vector" particles

```
Unpolarized Ore and Powell [1]
```

May 2024 talk

- randomly polarized Orthopositronium
- sum on the polarization state of the final photons

 \Rightarrow G4OrePowellAtRestModel , 11.3-beta-01 , Igor & Denis

Polarized Ore and Powell [1], Drisko [2] July 2024 EM meeting

 \Rightarrow G4PolarizedOrePowellAtRestModel , , Igor & Denis

Random Polarization: Differential decay rate

Sum on the Ps triplet states and on the γ polarizations,

Probability per unit time,

$$P \propto \left[\left(1 - \cos(\theta_{23}) \right)^2 + \left(1 - \cos(\theta_{31}) \right)^2 + \left(1 - \cos(\theta_{12}) \right)^2 \right] \mathsf{d}k_1 \mathsf{d}k_2 \mathsf{d}\Omega_1$$
 (1)

A. Ore and J. L. Powell [1]

Inclusive photon spectrum

Momentum and energy conservation

$$\vec{k}_1 + \vec{k}_2 + \vec{k}_3 = 0 \tag{2}$$

$$k_1 + k_2 + k_3 = 2m \tag{3}$$

m, electron mass. Integrating on k_2 , inclusive photon spectrum:

$$F(k_1) = 2\left[\frac{k_1(m-k_1)}{(2m-k_1)^2} - \frac{2m(m-k_1)^2}{(2m-k_1)^3}\ln\frac{m-k_1}{m} + \frac{2m-k_1}{k_1} + \frac{2m(m-k_1)}{k_1^2}\ln\frac{m-k_1}{m}\right]$$
(4)

that is, with $x \equiv k_1/m$,

$$F(x) = 2\left[\frac{x(1-x)}{(2-x)^2} - \frac{2(1-x)^2}{(2-x)^3}\ln(1-x) + \frac{2-x}{x} + \frac{2(1-x)}{x^2}\ln(1-x)\right]$$
(5)

A. Ore and J. L. Powell [1]

Inclusive γ energy spectrum

Right: comparison of experimental energy spectrum measured by Chang et al. Phys. Lett. B **157** (1985) 357 with Ore & Powell [1].

Event Generation; 1

- Three coplanar photons; decay computed in that plane

eq. (1)

$$P = c \left[(1 - \cos(\theta_{23}))^2 + (1 - \cos(\theta_{31}))^2 + (1 - \cos(\theta_{12}))^2 \right] dk_1 dk_2 d\Omega_1$$

- k_1 along \vec{x} , so eq. (1) reduces to a twice differential equation (of k_1, k_2).
- Take k_1 and k_2 at random, flat.
- $k_3 = 2m k_1 k_2$. Request $k_3 > 0$.

Event Generation; 2

- Momentum conservation, eq. (2), projecting \parallel and \perp to \vec{x} , that is, to $\vec{k_1}$. $k_1 + k_2 c_{12} + k_3 c_{13} = 0$ $0 + k_2 s_{12} + k_3 s_{13} = 0$

with $c_{ij} \equiv \cos \theta_{ij}$, $s_{ij} \equiv \sin \theta_{ij}$, $\theta_{ij} \equiv (\vec{k}_i, \vec{k}_j)$. Obtain cosines from energies $c_{12} = \frac{k_3^2 - k_1^2 - k_2^2}{2k_1k_2}$, $c_{13} = \frac{k_2^2 - k_1^2 - k_3^2}{2k_1k_3}$.

- **Request** $|c_{1i}| \leq 1$, i = 2, 3. k_i found to be in the range [0, m]
- Define sign convention as $\theta_{12} \ge 0$, $\theta_{13} \le 0$.
- Compute $heta_{23}$ from the scalar product of $ec{k}_2$ and $ec{k}_3$,

$$c_{23} = c_{12} c_{13} + s_{12} s_{13} \tag{6}$$

– Generate events from Ore & Powell factor eq. (1)

$$r = \left[\left(1 - \cos(\theta_{23}) \right)^2 + \left(1 - \cos(\theta_{31}) \right)^2 + \left(1 - \cos(\theta_{12}) \right)^2 \right]$$
(7)

(-)

Comments

- No need to compute the limits of the Dalitz area
- No divergences

Random Polarization: Results

Inclusive photon spectra OK.

$$-x_i \le 1 \quad (k_i \le m)$$
$$-r \le 8.$$

Polarized Model

P becomes proportional to $\left|(\vec{t_1}+\vec{t_2}+\vec{t_3})\cdot\vec{u}\right|^2 \mathsf{d}k_1\mathsf{d}k_2\mathsf{d}\Omega_1$,

– \vec{u} , positronium polarization, complex unit vector

 $- \vec{t}_1 = \vec{a}_1(\vec{a}_2.\vec{a}_3) - \vec{a}_2(\vec{a}_3.\vec{a}_1) - \vec{a}_3(\vec{a}_1.\vec{a}_2) + \vec{a}_1(\vec{a}_2'.\vec{a}_3') - \vec{a}_2'(\vec{a}_3'.\vec{a}_1) - \vec{a}_3'(\vec{a}_1.\vec{a}_2') ,$ $\vec{t}_2 \text{ and } \vec{t}_3 \text{ obtained by permutation of the indices.}$

The first two terms cancel upon the sum $(\vec{t}_1 + \vec{t}_2 + \vec{t}_3)$, so \vec{t}_1 can be computed as $\vec{t}_1 = -\vec{a}_3(\vec{a}_1.\vec{a}_2) + \vec{a}_1(\vec{a}'_2.\vec{a}'_3) - \vec{a}'_2(\vec{a}'_3.\vec{a}_1) - \vec{a}'_3(\vec{a}_1.\vec{a}'_2)$.

- \vec{a}_i is the polarization vector of photon i,

$$- \vec{a}'_{i} = \vec{a}_{i} \times \vec{n}_{i}, \quad \vec{n}_{i} = \vec{k}_{i}/k_{i}.$$

If quantization axis perpendicular to decay plane,

-
$$m = 0$$
, $\vec{u} = (0, 0, 1)$

-
$$m = +1$$
, $\vec{u} = (1, i, 0)/\sqrt{2}$

-
$$m = -1$$
, $\vec{u} = (1, -i, 0)/\sqrt{2}$.

Event Generation

- Depending on m, fill \vec{u} .
- Browse the Dalitz plane as for the non polarized case
- Photon i;
 - compute \vec{n}_i , direction vector
 - compute \vec{m}_i , perpendicular to \vec{n}_i in the horizontal plane,
 - generate polarization vector $ec{a}_i = \cos(\phi_i)ec{m}_i + \sin(\phi_i)ec{z}$, ϕ_i at random flat
 - compute $\vec{a}_i' = \vec{a}_i \times \vec{n}_i$;
- Compute $\vec{t} = (\vec{t}_1 + \vec{t}_2 + \vec{t}_3)$, $|\vec{t} \cdot \vec{u}|^2$;
- Shoot events from pdf proportional to $\left| \vec{t} \cdot \vec{u} \right|^2$.

pdfs

Validation: (1) quantization axis normal to decay plane; at equipartition

$$heta_{12}= heta_{23}= heta_{13}=120^\circ$$
, $k_1=k_2=k_3=2m/3$,

Drisko [2]: number of quanta polarized perpendicular to the plane of the quanta number polarized in the plane of detection of the quanta

is

- 5:1 when the positronium atom annihilates from the triplet m = 0 state,
- 2:1 for the $m=\pm 1$ states, and
- 3:1 for unpolarized positronium

 $P = (N_{+} - N_{-})/(N_{+} + N_{-}) = (3 - 1)/(3 + 1) = 0.5$, (Tab. 2 of [4], Tab. 1 of [3]).

Validation: (2) With Arbitrary Orientation

Distribution of θ , angle between the normal to the plane and the quantization axis, divided by $\sin \theta$.

(Table 4 of W. Bernreuther and O. Nachtmann Z.Phys.C 11 (1981) 235)

Conclusion

- Generation of Orthopositronium $~~
 ightarrow~3~\gamma$ at rest explored with mock-up code.
 - Random polarization
 - Polarized
- Validation exercices include check
 - Inclusive energy spectra
 - Angle distributions (polarized case)
- G4 Physics Models developed (Igor & Denis)
 - G4OrePowellAtRestModel (11.3-beta-01)
 - G4PolarizedOrePowellAtRestModel (m generated random (-1, 0, 1) with 1:1:1 proportion at the moment)

Same validation exercices performed during development.

Back-up

CPU time per event

On a DELL PRECISION 7520 with Fortran (Ubuntu 7.5.0-3ubuntu1 18.04)

Randomly polarized		0.22	μs
Polarized	m = 0	3.17	
	m = 1	6.21	

pdf normalization factors used in the acceptance-rejection method

- f = 8.1 (randomly polarized)
- f = 22. (polarized).

References

- A. Ore and J. L. Powell, "Three photon annihilation of an electron positron pair," Phys. Rev. 75 (1949) 1696
- "Spin and Polarization Effects in the Annihilation of Triplet Positronium", R. M. Drisko, Phys. Rev. 102, 1542 1956
- [3] "Measurement of photon polarization from the three-photon annihilation of orthopositronium", JB Ye, BZ Yang, XW Tang, Q Zhu, Physics Letters A 133, 1988, 309
- [4] "Polarization effects in the decay of orthopositronium to three photons", Frank M. Abel, Gregory S. Adkins, and Theodore J. Yoder" Phys. Rev. A 83, 062502 2011,