On the Gamma-Ray Conversion pdf: Towards a Direct 5D Event Generation

> D. Bernard LLR, Ecole Polytechnique and CNRS/IN2P3, France

> > 29rd Geant4 Collaboration Meeting

EM WG Plan of activity for 2024

Development of a new 5D angular generator for e+e- pair production.

A Critical View on G4BetheHeitler5DModel

- Slow

- Approximations
 - LPM effect on the final state pdf not taken into account
 - Nucleus finite size not taken into account (no high- q^2 suppression in $\gamma \to \mu^+\mu^-)$
 - Coulomb interaction effects on the final state pdf not taken into account

Generator efficiency

Generator efficiency as a function of photon E' = E-threshold. Efficiency small, but mild decrease with energy

Nucl. Instrum. Meth. A 899 (2018) 85

4

Bethe-Heitler differential cross section: divergences

• Fully linearly polarised photons

Berlin and Madansky, Phys. Rev. 78 (1950) 623 and May, Phys. Rev. 84 (1951) 265.

$$d\sigma = \frac{-\alpha Z^2 r_0^2 m^2}{(2\pi)^2 \omega^3} dE_+ d\Omega_+ d\Omega_- \frac{|p_-||p_+|}{|\vec{q}|^4} \left[\left(2E_+ \frac{p_- \sin \theta_- \cos \varphi_-}{E_- - p_- \cos \theta_-} + 2E_- \frac{p_+ \sin \theta_+ \cos \varphi_+}{E_+ - p_+ \cos \theta_+} \right)^2 - q^2 \left(\frac{p_- \sin \theta_- \cos \varphi_-}{E_- - p_- \cos \theta_-} - \frac{p_+ \sin \theta_+ \cos \varphi_+}{E_+ - p_+ \cos \theta_+} \right)^2 - E^2 \frac{(p_+ \sin \theta_+)^2 + (p_- \sin \theta_-)^2 + 2p_+ p_- \sin \theta_+ \sin \theta_- \cos (\varphi_+ - \varphi_-)}{(E_- - p_- \cos \theta_-)(E_+ - p_+ \cos \theta_+)} \right].$$

with: $|\vec{q}|^2 = |\vec{p_+} + \vec{p_-} - \vec{k}|^2$.

• Divergences:

• For
$$e^+$$
 and $e^ \frac{1}{(E - p \cos \theta)}$ forward divergence at high energies
• $\frac{1}{q^4}$ small recoil divergence

Geant4 Collaboration Meeting, - 5

G4BetheHeitler5DModel: Sampling Method

- Perform each step in appropriate Lorentz frame
 - Center-of-mass system (CMS) boost determined from photon energy E and target mass M.
 - Five variables are taken at random, $(\ell: \text{ lepton, that is, } e^+ \text{ or } e^-)$

- The three final particle 4-vectors are boosted "back" to the laboratory Lorentz frame.
- The Bethe-Heitler variables are obtained from the 4-vectors.
- The probability density function (pdf) is computed.
- Final-state phase space normalization for this set of cascade decays:

Review of Particle Physics (Particle Data Group)

See eqs. (1)-(3) in NIM A 899 (2018) 85

• In contrast to Bethe-Heitler we **do conserve energy momentum**, $E = E_{-} + E_{+} + E_{r}$

Change of variables; Acceptance-rejection method

	name			Jacobian	x_i range
$ heta^*$	target and pair polar angle	CMS	$\cos \theta^* = \frac{y-1}{1+y}, \ y = \exp(x_1)$	$\frac{y}{(1+y)^2}$	$[x_{1l}, x_{1u}]$
$\mu \ heta_\ell \ \phi_\ell \ \phi^*$	e^+e^- invariant mass electron and positron polar angle electron and positron azimuthal angle target and pair azimuthal angle	pair frame pair frame CMS	$\mu = \mu_{\min} \times (\mu_{r})^{x_{2}^{2}}$ $\cos \theta_{\ell} = x_{3}$ $\phi_{\ell} = x_{4}$ $\phi^{*} = x_{5}$	$2x_2\log{(\mu_{ m r})}\mu \ \sin{ heta_\ell} \ 1 \ 1$	$egin{array}{l} [0,1] \ [0,\pi] \ [-\pi,\pi] \ [-\pi,\pi] \end{array}$

• x_i , $i=1\cdots 5$ shot flat, this defines a pdf $h(ec{x})$

- Then use acceptance-rejection method (Von Neumann) PDG
 - Shoot u flat within [0, 1]
 - If $u \times C \times h(x) \leq f(x)$, keep; else reject.
- C depends on E and target, must be provided

```
C \times h(x) \geq f(x) must hold for all x !
```

7

q Distribution

 $\log_{10} \left(q / ({\rm MeV}/c) \right)$ distributions for γ -ray conversions on Argon

- isolated nucleus, low q divergence further at higher energies
- atom, low-q suppression

Normalization: same number of events.

Semeniouk and Bernard, 24th Geant4 Collaboration meeting, 23-27 Sept. 2019, JLab

q Spectra; h() vs f()

All events

Acceptance-Rejection Method Applied

The pdf "proposed" by h(x) fails to show the low-q divergence of $f(x) \Rightarrow$ low efficiency

Previously existing generators

- Direct generation of the final state (example, θ_+ , θ_- , ϕ_+ , ϕ_- , E_+/E)
 - θ , polar angle
 - $-~\phi$, azimuthal angle
 - E, energy
 - $-\ p$, momentum
 - +, positron; -, electron; r, recoil
- No Acceptance-Rejection Method

Nucleus Recoil: Photon Polar Angle Resolution

Cannot measure nucleus recoil:

induced 68 % containment photon polar angle resolution for various event generators. adapted from P. Gros et al. Astropart. Phys. 88 (2017) 60

On Other Models

BetheHeitler	heta, E from Urban - Tsai	coplanar	energy conservation
Livermore	heta, E from Urban - Tsai	coplanar	HE momentum conservation
Penelope	not coplanar $p(\cos \theta) = (1 - \beta \cos \theta)^{-2}$	$ heta_+ \; heta \; \phi_+ \; \phi$ sampled independantly	

Not the full (5D) Bethe-Heitler differential cross section

Either no recoil generated (BetheHeitler, Livermore), or not distributed as from QED (Penelope)

On the Generation of lepton polar angle, θ

"Leading order multiplicative term of the Sauter-Gluckstern-Hull expression"

A. F. Bielajew, NRCC Report: PIRS-0287R (1994).

 $\frac{\mathrm{d}P}{\mathrm{d}\theta_{\pm}} = \frac{\sin\theta_{\pm}}{2p_{\pm}(E_{\pm} - p_{\pm}\cos\theta_{\pm})^2}$

Sampled from x, random number uniform on $\left[0,1\right]$

$$\sin \theta_{\pm} = \frac{\sqrt{x(1-x)}}{p_{\pm}(2x-1) + E_{\pm}}, \ \cos \theta_{\pm} = \frac{E_{\pm}(2x-1) + p_{\pm}}{p_{\pm}(2x-1) + E_{\pm}}$$
that is, $x = \left(1 - \frac{\cos \theta_{\pm} E_{\pm} - p_{\pm}}{\cos \theta_{\pm} p_{\pm} - E_{\pm}}\right)/2$
that is, $x = \frac{m^2(\cos \theta_{\pm} + 1)(\cos \theta_{\pm} p_{\pm} + E_{\pm})}{2(E_{\pm} + p_{\pm})((m\cos \theta_{\pm})^2 + (E_{\pm}\sin \theta_{\pm})^2)}$

Distributions from 5D Model

 $1\,{\rm GeV}$ $\gamma\text{-ray}$ conversions on Argon nuclei

- x_+ distribution almost flat
- x_+ and x_- strongly correlated.

"High efficiency" 5D model must take that $heta_+, heta_-$ correlation into account

– Isolated nuclei: "universal" x_+ distribution, energy-independent

– Atoms: x_+ distribution decreases at high energy

"universal" $|x_+ - x_-|$ high-energy distribution , due to low q suppression.

Distributions from 5D Model: $\phi_+ - \phi_-$

Acoplanarity

- Atoms: "universal" $||\phi_+ - \phi_-| - \pi|$ high-energy distribution, due to low q suppression. Expected (θ_+ scales like 1/E, so $p_{\perp,+}$ distribution E-invariant, as is q distribution)

$$|x_+ - x_-|$$
 and $|\phi_+ - \phi_-|$ Distributions: Relation with q

 $E^{2} + p_{+}^{2} + p_{-}^{2} + 2p_{+}p_{-}(\cos\theta_{+}\cos\theta_{-} + \sin\theta_{+}\sin\theta_{-}\cos(\phi_{+} - \phi_{-})) - 2E(p_{+}\cos\theta_{+} + p_{-}\cos\theta_{-})$

D. Bernard

 $|x_+ - x_-|$, $|\phi_+ - \phi_-|$ Correlation

Small correlation

Event Generation Mock-up

Argon, 1 GeV

 p_+ , $x_+ + x_-$, $\log_{10} |x_+ - x_-|$, $\log_{10} ||\phi_+ - \phi_-| - \pi|$, from histograms. $\phi_+ + \phi_-$, flat

$$\Rightarrow x_+, x_-, \theta_+, \theta_-, \phi_+, \phi_-,$$
$$\Rightarrow E_- = k - E_+$$

D. Bernard

Checks (1) Angle / Momentum

Argon, 1 GeV

D. Bernard

Checks (2) Recoil

 $\vec{q} = \vec{k} - (\vec{p}_+ + \vec{p}_-)$

Argon, 1 GeV

Checks (3) Pair Open Angle

Argon, 1 GeV

Conclusion

G4BetheHeitler5DModel slow;

Uneasy parameter space browsing for acceptance-rejection method / $1/q^4$ divergence

- Pre-existing models, direct generation (not acceptance-rejection), incorrect \vec{q} generation Issue in electron / positron angle(s) correlations
- $x_+ x_-$ and distributions $\phi_+ \phi_-$ distributions energy independent (asymptotically) \Rightarrow New, direct, 5D event generation Some validation checks performed

- Polarization ?