Development of EM models to describe ionisation in the atmosphere

Geant4 Collaboration Meeting 2024, Catania, Italy

<u>F. Nicolanti</u>, B. Caccia, A. Cartoni, D.Emfietzoglou, R. Faccini, S. Incerti, I. Kyriakou, M. Satta, H. N. Tran, C. Mancini-Terracciano

Motivation

The impact of cosmic rays and ions on atmospheric chemistry and climate evolution is still poorly understood:

• ions affect reaction rates (**up to 10 orders of magnitude**) and types of reactions depending on the ionization state.

Monte Carlo for studying induced ionization

• Most of the simulation useful for the purpose are based on MC codes such as Geant4 (Oulu CRAC:CRII, ATMOCOSMIC, AtRIS, RUSCOSMICS, ..)

Henri H

C++ toolkit for Monte Carlo simulation of hadronic and electromagnetic interaction of particle/radiation with matter

Earth magnetosphere

DICOM dosimetry

PET Scan (GATE)

Geant4-DNA

glast/fermi (NASA)

Monte Carlo for studying induced ionization

Current State-of-the-Art approach:

• Condensed history

DUTPUT

- Limited low-energy applicability
- No description of target molecular properties

A new approach with Geant4-DNA:

- Step-by-step modelling
- Description of target molecular properties
- Can simulate diffusion, dissociation, chemical reactions

• Average number of ions pair $[cm^{-3}s^{-1}]$ (no ions description)

- Number of ions,
- Ionization states,
- Excitation states,
- Spatial distribution,
- Number of species produced

Required input for chemistry models

Geant4-DNA for atmosphere

N_2 and O_2 implementation in Geant4-DNA (10eV-10MeV)

[MODELS ARE DESCRIBED IN THE G4AtmXXXModel.cc .hh CLASSES]

3 new model classes, 2 new model structure classes Designed to handle a mix of materials

Interaction type	Cross section type	Model name	Implementation type
Impact ionisation	Total and differential (production energy of secondaries) - including partial cross sections for 6 subshells for O2, 5 for N2,	RBEB (except for k-shells ionisation which used the averaged RBEB)	Analytical
Elastic scattering	Total and differential (scattering angle)	SCAR (Screening Corrected Additivity Rule) with optimized free potential parameters	Data tables: Image: mage: sigmadiff_cumulated_elastic_eN2_atm.dat Image: sigma_elastic_eN2_atm.dat
Electronic excitation	Total - 27 states for O2, 32 states for N2, Autoionization process is included	Formulas based on Porter et al, fitted cross section parameters	Data tables:

Nicolanti F, et al. . Calculation of electron interaction models in N2 and O2. In: Phys Med.

F. Nicolanti, et al. Geant4-DNA development for atmospheric applications: N2, O2 and CO2 models Implementation (Accepted by Phys Med. 2024)

Stopping power and Range validation

Stopping power and Range validation

*CO*² molecule

Recently added CO_2 molecule: (Air composition fraction: 0.04%)

- Elastic: TCS and SDCS
- Ionization: TCS and SDCS
- Excitation: TCS for 15 excitation states (corrections applied to Porter's CS as described in [1], auto-ionization included)

Cosmic Rays simulation

To study the impact of primary cosmics on atmospheric ionisation a two-steps simulation was developed:

CORSIKA code:

 for simulating CR spectra at 10 km altitude (primary protons energy: 10E14 - 10E16 eV)

A Geant4 simulation:

- Primaries generator:
 - A custom thread-safe primary generator was implemented for importing CORSIKA output
- Combined Physics:
 - emstandard_opt4
 - G4AtmDNAPhysics for *e* (E<10MeV)
- uniform magnetic and electric field are incorporated into the simulation

Cosmic Rays simulation

Physico-chemical stage

• After physical interaction molecules can dissociate or relax

t=10⁻¹⁵s

• The physico-chemical stage has been implemented for N_2 and O_2 (work in progress for CO_2)

t=10⁻¹²s

Goal: have a rough first estimate using the same cross-section models modified for e^+ impact (repulsive columbian interactions, no exchange effects)

Processes:

- Ionisation: RBEB (Relativistic Binary Encounter Bethe) with the Wannier-type threshold law [1] (RBEB-W)
- Elastic: (SCAR) Screening Corrected Additivity Rule
- Excitation:
 - Experimental data for e⁺ impact on N₂, O₂ scarce or absent
 - Treating the excitation of N2 and O2 by e+/e- in the same way [2]

[1]Franz,M.; Wiciak-Pawłowska, K.; Franz, J. Binary-Encounter Model for Direct Ionization of Molecules by Positron-Impact. Atoms 2021, 9, 99.
[2] Champion C, Le Loirec C. Positron follow-up in liquid water: I. A new Monte Carlo track-structure code. Phys Med Biol. 2006 Apr 7;51(7):1707-23.

Next steps

• Extending physical models to **positron** impact

- Fitting the free parameters of RBEQ and Porter's formula to the total cross section obtained by application of the optical theorem
- Running simulation at high (with the help of Cineca GALILEO100)
 - The simulation output will be used as input for chemistry models

Perspectives:

• Including chemical stage (experimental G-values required)

Thank you for your attention!

[GOAL: Studying the impact of ionisation on atmospheric chemistry]

Geant4 models:

- Not cares what happens to the medium after the physical interactions Geant4-DNA approach:
- Allows to obtain the number of ions produced, the ionisation states, chemical species, ..
- ✓ We have developed and implemented electron impact model with N_2, O_2, CO_2 molecules, including dissociation and relaxation after the physical interactions
- ✓ We have written a Geant4-code to simulate CR propagations in air
- ✓ **READY to RUN** with high statistic... !

Geant4 Collaboration Meeting 2024, Catania, Italy Francesca Nicolanti, 09/10/24 Contact: francesca.nicolanti@uniroma1.it

e+/N2 - Partial Ionization Cross Sections **Processes:** 1e-16 BEB (e-) 3.0 **Ionisation:** BEB-W model [1] BEB (e+) BEB-W (e+) 2.5 Bluhme (1998) Elastic Scattering: SCAR • Marler (2005) 2.0 σ (cm²) Brunger et al **Electronic excitation:**? ٠ L.5 0.5 Wannier law near threshold 0.0 $\sigma(E) \propto (E-B)^{-\alpha}.$ (several parametrizations 10² 10^{1} 10³ 10^{4} are possible) E (eV) e+/e- cross section merge for \sim E>1keV

[1] Fedus, K.; Karwasz, G.P. Binary-encounter dipole model for positron-impact direct ionization. *Phys. Rev. A* 2019, 100, 062702.

Regularities in positronium formation for atoms and molecules

J R Machacek $^1\!,$ F Blanco $^2\!,$ G Garcia $^3\!,$ S J Buckman 1,4 and J P Sullivan 1

• Semiempirical formula fitted to exp data

 $f(x) = Ax^p \mathrm{e}^{-bx},$

• Fitted parameters:

Parametri ottimali e errori associati: x0 = 11.0729 ± 0.5541 A = 1.2388e-16 ± 2.5049e-17 p = 0.4931 ± 0.1140 b = 0.0426 ± 0.0060 Positronium impact cross section $e^+ - N_2$

