
Ben Morgan (The University of Warwick)

Planning Geant4’s next
Major Release

Geant4 Collaboration Workshop

Ben Morgan (The University of Warwick)

Ben Morgan (The University of Warwick)

● If lifetimes of Geant4’s major versions are a guide, we might expect the next one in 3-4
years from now
○ About to release 11.3, last minor releases of 9, 10 were 9.6 and 10.7

● LHC’s Long Shutdown 3 (2026-28) provides a possible window for major updates without
impacting its experiments production needs
○ That’s HEP, and need to consider all the other user communities here

● So why start thinking about it now?
○ Major releases are opportunity for breaking changes to interfaces/behaviour to

improve Geant4’s technical/physics performance, robustness, usability…
○ … but that requires careful preparation (what we want to do) and prioritization

(what we can do, given available FTE).
○ Also needs time to gather feedback from stakeholders/users on requirements,

limitations they may have that warrant or defer a major release
● Nominal 1yr integration period for releases means solutions need to have been

prototyped/tested in advance of the year the new major release is prepared

Rationale for starting this discussion

2

Ben Morgan (The University of Warwick)

Where/How to start?
● Use this week to start thinking/discussing amongst ourselves

○ Limitations on timescale for the next major release from stakeholders/users?

○ What ideas do we have for interface/implementation changes we could make to improve Geant4’s
physics/technical performance and usability, given the freedom offered by a major release?

○ The good, the bad, the ugly… don’t be afraid to be radical here, but need to note down cost/benefit
to us and users

● CodiMD Doc for you to write ideas, comments, down:
○ https://codimd.web.cern.ch/fwCUqelaTnGl-PvbX2cYUA

● Nothing more than information gathering to see what ideas there are, how much
interest there is, and what next steps might be, if any, over the coming months/years
○ Emphasize that development focus still very much on consolidating release 11!

○ Equally, might identify things we can start implementing now, without breaking interfaces!

● Simply to motivate discussion and illustrate what could be considered for a major
release, will outline some personal ideas for breaking changes

3

https://codimd.web.cern.ch/fwCUqelaTnGl-PvbX2cYUA

Ben Morgan (The University of Warwick)

Personal idea: Ownership of Resources 1

● Not always clear who owns an instance created through new:
○ Raw new is confusing to users (and goes against all modern C++ teaching)

○ Even if pointer held in local variable, not always a corresponding delete
● Raw pointers passed around a lot and can be extremely confusing to

trace who owns (i.e. has responsibility of deleting) what.
○ If I’m returned a raw pointer, do I own it?

○ If I pass a raw pointer into something, do I retain or hand over ownership?

● Use of raw new/delete for class data members where other solutions
may fit better:
○ std::optional or operator bool() for “may not be initialized/available”?

○ std::unique_ptr for collections of owned pointers, or additional support classes for
collections?

4

Ben Morgan (The University of Warwick)

Personal idea: Ownership of Resources 2

● C++11/17 provide smart pointers to help here, so can we use them more
extensively internally and in public interfaces to clarify this?

● If an object must be created through new, should we make constructors
private, and have a factory function instead?

5

// e.g. instead of
G4Foo* SomeFunction();

// clarify that caller gets ownership
std::unique_ptr<Foo> SomeFunction()

// e.g. instead of
new G4SomethingStored(“foo”);

// hide new in factory function
G4SomethingFactory::Make(“foo”);
auto x = G4SomethingFactory::Make(“bar”);

Ben Morgan (The University of Warwick)

Personal idea: Reduce Global Statics/Singletons

● Though Geant4 is a library, actually difficult, if not impossible, to setup,
teardown, and re-setup new “experiment” inside same application
○ As outlined here: https://gitlab.cern.ch/geant4/geant4-dev/-/issues/140

○ Primarily due to global statics/singletons and their setup/teardown, or lack thereof

● Removing them entirely would be a huge redesign, so impractical now(*),
but maybe some mitigations/improvements possible:
○ Are there any cases where a singleton or otherwise global isn’t really needed now, or

would be easy to de-singleton it?

○ Could we improve/provide explicit “teardown” functions/interfaces so we don’t have
to rely entirely on static deletion?

● (*) but maybe review use and see how they might be in future…

6

https://gitlab.cern.ch/geant4/geant4-dev/-/issues/140

Ben Morgan (The University of Warwick)

Personal idea: Multithreading and Allocators

● Still retain “GEANT4_BUILD_MULTITHREADED” configuration option, so
could we now remove this and just always build with MT support?
○ Potential impact to sequential performance, but if so how much?

○ A cost/benefit exercise in reducing build complexity against runtime performance

● Whether we could remove “classic” MT mode, only use Tasking.
○ Again, cost/benefit in performance, long term support (of Tasking), ease of use

● Allocators and Thread-Local Storage
○ Cannot deallocate an object on a different thread to that where it was allocated

○ E.g. if we wanted to make more use of Tasking, can’t guarantee which thread a Task
runs on

○ Look to be technical solutions out there, but requires more research and testing.

7

Ben Morgan (The University of Warwick)

Personal idea: Learning from R&D Projects

● R&D projects are just that, but even if still in progress, are there things
we could learn from that might be applied more broadly?

● From the G4HepEM and GPU R&D projects:
○ Better structuring of data (e.g. cross-sections) for efficient memory access?

○ Structure of stepping loop?

● From Python/Julia bindings:
○ What, exactly, in Geant4 are user interfaces, and what are toolkit-internal.

■ This is a question about what classes/functions to bind/expose.

○ Backporting/feedback on user interface usability/convenience

8

Ben Morgan (The University of Warwick)

Personal idea: Doxygen-ation of primary classes

● Something we can actually be doing now (modulo defining the style of
comments)!
○ Partially a repayment of technical debt that we’ve accumulated over the years

● Basically, consistently format/define “docstrings” that describe a
class/function/etc’s purpose, inputs, outputs, pre/postconditions, e.g.

● “It’s too much work…”: no, most descriptions are there, just needs
migration. Which can be done step by step (hence can start doing now)

● See, e.g https://root.cern/doc/v632/classTTree.html for what’s generated

9

// See G4String.hh
/// @brief Return lowercased copy of string
/// @param[in] str the string to lowercase
/// @return lowercased copy of `str`
inline G4String to_lower_copy(G4String str);

More details on the Doxygen site:
https://www.doxygen.nl/manual/docblocks.
html

https://root.cern/doc/v632/classTTree.html
https://www.doxygen.nl/manual/docblocks.html
https://www.doxygen.nl/manual/docblocks.html

Ben Morgan (The University of Warwick)

Summary, and what next?

● So those are my thoughts… (criticism welcome!)
● … what are yours?
● Use this week to discuss/argue about ideas and timescales for a next

major release of Geant4
○ What blockers/limits are then in time from our stakeholders and users?

○ What ideas, if any, are there that would require a major release to implement?

○ What costs/benefits to users do you think there are?

○ Etc…
● Use the CodiMD doc to note down your thoughts/objections (but put

your name against them so they can be discussed!):
○ See where we are at the end of this week, what next steps there might be (and there

might be none at this point!).

10

