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Rationale for starting this discussion

If lifetimes of Geant4’s major versions are a guide, we might expect the next one in 3-4
years from now

o About to release 11.3, last minor releases of 9, 10 were 9.6 and 10.7
LHC’s Long Shutdown 3 (2026-28) provides a possible window for major updates without
impacting its experiments production needs

o That’s HEP, and need to consider all the other user communities here

So why start thinking about it now?
o Major releases are opportunity for breaking changes to interfaces/behaviour to
improve Geantd4’s technical/physics performance, robustness, usability...
O ... but that requires careful preparation (what we want to do) and prioritization
(what we can do, given available FTE).
o Also needs time to gather feedback from stakeholders/users on requirements,
limitations they may have that warrant or defer a major release
Nominal 1yr integration period for releases means solutions need to have been
prototyped/tested in advance of the year the new major release is prepared
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Where/How to start? Y.

® Use this week to start thinking/discussing amongst ourselves

O  Limitations on timescale for the next major release from stakeholders/users?

O  What ideas do we have for interface/implementation changes we could make to improve Geant4’s
physics/technical performance and usability, given the freedom offered by a major release?

O The good, the bad, the ugly... don’t be afraid to be radical here, but need to note down cost/benefit
to us and users

® CodiMD Doc for you to write ideas, comments, down:
O  https://codimd.web.cern.ch/fwCUqgelaTnGI-PvbX2cYUA

® Nothing more than information gathering to see what ideas there are, how much

interest there is, and what next steps might be, if any, over the coming months/years
O  Emphasize that development focus still very much on consolidating release 11!
O  Equally, might identify things we can start implementing now, without breaking interfaces!

e Simply to motivate discussion and illustrate what could be considered for a major
release, will outline some personal ideas for breaking changes
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Personal idea: Ownership of Resources 1 M

® Not always clear who owns an instance created through new:
O  Raw new is confusing to users (and goes against all modern C++ teaching)
O Even if pointer held in local variable, not always a corresponding delete
® Raw pointers passed around a lot and can be extremely confusing to
trace who owns (i.e. has responsibility of deleting) what.
O If ’'m returned a raw pointer, do | own it?
O If I pass a raw pointer into something, do | retain or hand over ownership?
® Use of raw new/delete for class data members where other solutions

may fit better:
O std::optional or operator bool() for “may not be initialized/available”?

O std::unique_ptr for collections of owned pointers, or additional support classes for
collections?
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Personal idea: Ownership of Resources 2 A%

® C++11/17 provide smart pointers to help here, so can we use them more
extensively internally and in public interfaces to clarify this?

// e.g. instead of
G4Foo* SomeFunction();

// clarify that caller gets ownership
std: :unique_ptr<Foo> SomeFunction()

® |f an object must be created through new, should we make constructors
private, and have a factory function instead?

// e.g. instead of
new G4SomethingStored(“foo”);

// hide new in factory function
G4SomethingFactory: :Make(“f00”);
auto x = G4SomethingFactory::Make(“bar”);
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Personal idea: Reduce Global Statics/Singletons had

® Though Geant4 is a library, actually difficult, if not impossible, to setup,

teardown, and re-setup new “experiment” inside same application
O  As outlined here: https://qitlab.cern.ch/geant4/qeant4-dev/-/issues/140
O  Primarily due to global statics/singletons and their setup/teardown, or lack thereof

® Removing them entirely would be a huge redesign, so impractical now(*),

but maybe some mitigations/improvements possible:

O Are there any cases where a singleton or otherwise global isn’t really needed now, or
would be easy to de-singleton it?

O  Could we improve/provide explicit “teardown” functions/interfaces so we don’t have
to rely entirely on static deletion?

® (*) but maybe review use and see how they might be in future...
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Personal idea: Multithreading and Allocators M

® Still retain “GEANT4_BUILD_MULTITHREADED” configuration option, so

could we now remove this and just always build with MT support?
O  Potential impact to sequential performance, but if so how much?
O A cost/benefit exercise in reducing build complexity against runtime performance

® Whether we could remove “classic” MT mode, only use Tasking.
O  Again, cost/benefit in performance, long term support (of Tasking), ease of use
® Allocators and Thread-Local Storage
O Cannot deallocate an object on a different thread to that where it was allocated
O E.g. if we wanted to make more use of Tasking, can’t guarantee which thread a Task

runs on
O Look to be technical solutions out there, but requires more research and testing.
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Personal idea: Learning from R&D Projects h44

® R&D projects are just that, but even if still in progress, are there things
we could learn from that might be applied more broadly?
® From the G4HepEM and GPU R&D projects:

O  Better structuring of data (e.g. cross-sections) for efficient memory access?
O  Structure of stepping loop?

® From Python/Julia bindings:
O  What, exactly, in Geant4 are user interfaces, and what are toolkit-internal.
m This is a question about what classes/functions to bind/expose.
O Backporting/feedback on user interface usability/convenience
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Personal idea: Doxygen-ation of primary classes A%

Something we can actually be doing now (modulo defining the style of
comments)!

O  Partially a repayment of technical debt that we’ve accumulated over the years
Basically, consistently format/define “docstrings” that describe a
class/function/etc’s purpose, inputs, outputs, pre/postconditions, e.g.
// See G4String.hh

/// @brief Return lowercased copy of string More details on the Doxygen site:
/// @param[in] str the string to lowercase https://www.doxygen.nl/manual/docblocks.
/// @return lowercased copy of ‘str’ html

inline G4String to_lower_copy(G4String str);
“It’s too much work...”: no, most descriptions are there, just needs

migration. Which can be done step by step (hence can start doing now)
See, e.g https://root.cern/doc/v632/classTTree.html for what’s generated
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Summary, and what next? A%

® So those are my thoughts... (criticism welcome!)
® ... whatareyours?

® Use this week to discuss/argue about ideas and timescales for a next

major release of Geant4
O  What blockers/limits are then in time from our stakeholders and users?
O  What ideas, if any, are there that would require a major release to implement?
O  What costs/benefits to users do you think there are?
O Etc...
e Use the CodiMD doc to note down your thoughts/objections (but put

your name against them so they can be discussed!):

O See where we are at the end of this week, what next steps there might be (and there
might be none at this point!).
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