Planning Geant4’s next

Major Release

Geant4 Collaboration Workshop

Ben Morgan (The University of Warwick)

Ao/

WARWICK

IIIIIIIIIIIIIIIIIIIIII

Rationale for starting this discussion

If lifetimes of Geant4’s major versions are a guide, we might expect the next one in 3-4
years from now

o About to release 11.3, last minor releases of 9, 10 were 9.6 and 10.7
LHC’s Long Shutdown 3 (2026-28) provides a possible window for major updates without
impacting its experiments production needs

o That’s HEP, and need to consider all the other user communities here

So why start thinking about it now?
o Major releases are opportunity for breaking changes to interfaces/behaviour to
improve Geantd4’s technical/physics performance, robustness, usability...
O ... but that requires careful preparation (what we want to do) and prioritization
(what we can do, given available FTE).
o Also needs time to gather feedback from stakeholders/users on requirements,
limitations they may have that warrant or defer a major release
Nominal 1yr integration period for releases means solutions need to have been
prototyped/tested in advance of the year the new major release is prepared

Ben Morgan (The University of Warwick)

WARWICK

Where/How to start? Y.

® Use this week to start thinking/discussing amongst ourselves

O Limitations on timescale for the next major release from stakeholders/users?

O What ideas do we have for interface/implementation changes we could make to improve Geant4’s
physics/technical performance and usability, given the freedom offered by a major release?

O The good, the bad, the ugly... don’t be afraid to be radical here, but need to note down cost/benefit
to us and users

® CodiMD Doc for you to write ideas, comments, down:
O https://codimd.web.cern.ch/fwCUqgelaTnGI-PvbX2cYUA

® Nothing more than information gathering to see what ideas there are, how much

interest there is, and what next steps might be, if any, over the coming months/years
O Emphasize that development focus still very much on consolidating release 11!
O Equally, might identify things we can start implementing now, without breaking interfaces!

e Simply to motivate discussion and illustrate what could be considered for a major
release, will outline some personal ideas for breaking changes

Ben Morgan (The University of Warwick) 3

https://codimd.web.cern.ch/fwCUqelaTnGl-PvbX2cYUA

Personal idea: Ownership of Resources 1 M

® Not always clear who owns an instance created through new:
O Raw new is confusing to users (and goes against all modern C++ teaching)
O Even if pointer held in local variable, not always a corresponding delete
® Raw pointers passed around a lot and can be extremely confusing to
trace who owns (i.e. has responsibility of deleting) what.
O If ’'m returned a raw pointer, do | own it?
O If I pass a raw pointer into something, do | retain or hand over ownership?
® Use of raw new/delete for class data members where other solutions

may fit better:
O std::optional or operator bool() for “may not be initialized/available”?

O std::unique_ptr for collections of owned pointers, or additional support classes for
collections?

Ben Morgan (The University of Warwick) 4

Personal idea: Ownership of Resources 2 A%

® C++11/17 provide smart pointers to help here, so can we use them more
extensively internally and in public interfaces to clarify this?

// e.g. instead of
G4Foo* SomeFunction();

// clarify that caller gets ownership
std: :unique_ptr<Foo> SomeFunction()

® |f an object must be created through new, should we make constructors
private, and have a factory function instead?

// e.g. instead of
new G4SomethingStored(“foo”);

// hide new in factory function
G4SomethingFactory: :Make(“f00”);
auto x = G4SomethingFactory::Make(“bar”);

Ben Morgan (The University of Warwick) 5

Personal idea: Reduce Global Statics/Singletons had

® Though Geant4 is a library, actually difficult, if not impossible, to setup,

teardown, and re-setup new “experiment” inside same application
O As outlined here: https://qitlab.cern.ch/geant4/qeant4-dev/-/issues/140
O Primarily due to global statics/singletons and their setup/teardown, or lack thereof

® Removing them entirely would be a huge redesign, so impractical now(*),

but maybe some mitigations/improvements possible:

O Are there any cases where a singleton or otherwise global isn’t really needed now, or
would be easy to de-singleton it?

O Could we improve/provide explicit “teardown” functions/interfaces so we don’t have
to rely entirely on static deletion?

® (*) but maybe review use and see how they might be in future...

Ben Morgan (The University of Warwick) 6

https://gitlab.cern.ch/geant4/geant4-dev/-/issues/140

Personal idea: Multithreading and Allocators M

® Still retain “GEANT4_BUILD_MULTITHREADED” configuration option, so

could we now remove this and just always build with MT support?
O Potential impact to sequential performance, but if so how much?
O A cost/benefit exercise in reducing build complexity against runtime performance

® Whether we could remove “classic” MT mode, only use Tasking.
O Again, cost/benefit in performance, long term support (of Tasking), ease of use
® Allocators and Thread-Local Storage
O Cannot deallocate an object on a different thread to that where it was allocated
O E.g. if we wanted to make more use of Tasking, can’t guarantee which thread a Task

runs on
O Look to be technical solutions out there, but requires more research and testing.

Ben Morgan (The University of Warwick)

Personal idea: Learning from R&D Projects h44

® R&D projects are just that, but even if still in progress, are there things
we could learn from that might be applied more broadly?
® From the G4HepEM and GPU R&D projects:

O Better structuring of data (e.g. cross-sections) for efficient memory access?
O Structure of stepping loop?

® From Python/Julia bindings:
O What, exactly, in Geant4 are user interfaces, and what are toolkit-internal.
m This is a question about what classes/functions to bind/expose.
O Backporting/feedback on user interface usability/convenience

Ben Morgan (The University of Warwick) 8

Personal idea: Doxygen-ation of primary classes A%

Something we can actually be doing now (modulo defining the style of
comments)!

O Partially a repayment of technical debt that we’ve accumulated over the years
Basically, consistently format/define “docstrings” that describe a
class/function/etc’s purpose, inputs, outputs, pre/postconditions, e.g.
// See G4String.hh

/// @brief Return lowercased copy of string More details on the Doxygen site:
/// @param[in] str the string to lowercase https://www.doxygen.nl/manual/docblocks.
/// @return lowercased copy of ‘str’ html

inline G4String to_lower_copy(G4String str);
“It’s too much work...”: no, most descriptions are there, just needs

migration. Which can be done step by step (hence can start doing now)
See, e.g https://root.cern/doc/v632/classTTree.html for what’s generated

Ben Morgan (The University of Warwick) 9

https://root.cern/doc/v632/classTTree.html
https://www.doxygen.nl/manual/docblocks.html
https://www.doxygen.nl/manual/docblocks.html

Summary, and what next? A%

® So those are my thoughts... (criticism welcome!)
® ... whatareyours?

® Use this week to discuss/argue about ideas and timescales for a next

major release of Geant4
O What blockers/limits are then in time from our stakeholders and users?
O What ideas, if any, are there that would require a major release to implement?
O What costs/benefits to users do you think there are?
O Etc...
e Use the CodiMD doc to note down your thoughts/objections (but put

your name against them so they can be discussed!):

O See where we are at the end of this week, what next steps there might be (and there
might be none at this point!).

Ben Morgan (The University of Warwick) 10

