Update on the emulation of nuclear interaction models with Deep Learning **G4 Collaboration Meeting 2024 - Four Points Catania**

L. Arsini^{1,2}, S. Burrello³, B. Caccia⁴, A. Ciardiello¹, M. Colonna³, S. Giagu^{1,2}, C. Mancini Terracciano^{1,2} ¹Department of Physics, Sapienza University of Rome, Rome, Italy. ²INFN, Section of Rome, Rome, Italy. ⁴INFN, Section of LNS ³Istituto Superiore di Sanità, Rome, Italy.

09/10/2024

Problems in Geant4 below 100 MeV/u

No dedicated model to nuclear interaction below 100 MeV/u in Geant4

Many papers showed discrepancies:

Braunn et al. : one order of magnitude in 12C fragmentation at 95 MeV/u on thick PMMA target

De Napoli et al. : angular distribution of the secondaries emitted in the interaction of 62 MeV/u 12C on thin carbon target

Dudouet et al.: similar results with a 95 MeV/u 12C beam on H, C, O, Al and Ti targets

Update on the emulation of nuclear interaction models with Deep Learning

- Exp. data
- **G4-BIC**
- G4-QMD

[Plot from De Napoli et al. Phys. Med. Biol., vol. 57, no. 22, pp. 7651–7671, Nov. 2012]

Cross section of the ⁶Li production at 2.2 degree in a ¹²C on ^{nat}C reaction at 62 MeV/u.

BLOB (Boltzmann-Lagevein One Body)

- Test-particle approach
- Self-consistent mean field + collisions
- Probability to find a nucleon in the phase space

Update on the emulation of nuclear interaction models with Deep Learning

Lorenzo Arsini - 09/10/2024 G4 Collaboration Meeting 2024 - Four Points Catania 10 0 -10 -20 -30 -40

BLOB (Boltzmann-Lagevein One Body)

- Test-particle approach
- Self-consistent mean field + collisions
- Probability to find a nucleon in the phase space

Update on the emulation of nuclear interaction models with Deep Learning

Lorenzo Arsini - 09/10/2024 G4 Collaboration Meeting 2024 - Four Points Catania 10 0 -10 -20 -30 -40

BLOB (Boltzmann-Lagevein One Body)

- Test-particle approach
- Self-consistent mean field + collisions
- Probability to find a nucleon in the phase space

Update on the emulation of nuclear interaction models with Deep Learning

Lorenzo Arsini - 09/10/2024 G4 Collaboration Meeting 2024 - Four Points Catania 10 0 -10 -20 -30 -40

We interfaced BLOB with Geant4 and its de-excitation model

[C. Mancini-Terracciano et al. Preliminary results coupling "Stochastic Mean Field" and "Boltzmann-Langevin One Body" models with Geant4. In: Physica Medica 67 (2019), pp. 116-122. doi: 10.1016/j.ejmp.2019.10.026.]

Order of minutes per interaction!

Update on the emulation of nuclear interaction models with Deep Learning

 $^{\prime}C + ^{\prime\prime}C \rightarrow ^{4}He \text{ at } 62 \text{ MeV/u}$

Deep Learning to accelerate NIMs

Why?

- Approximating complex functions with Neural Networks
- Leveraging GPU acceleration for ultra-fast execution

How?

• Building Physics-inspired architectures

Starting from a proof-of-concept study on QMD

Update on the emulation of nuclear interaction models with Deep Learning

Update on the emulation of nuclear interaction models with Deep Learning

What to emulate?

Update on the emulation of nuclear interaction models with Deep Learning

other

Top Hotspots

 (\sim)

This section lists the most active functions in your application. Optimizing these hotspot functions typically results in improving overall application performance.

Function	Module	CPU Time 🛛
lapla	run-orig	176.281s
erff	libm.so.6	17.201s
define_two_clouds_rp	run-orig	9.658s
sortrx	run-orig	7.018s
powf	libm.so.6	5.377s
[Others]		16.403s

Learning the Potential: DL model Particle-wise MLP for Potential Prediction

Update on the emulation of nuclear interaction models with Deep Learning

Learning the Potential: DL model Particle-wise MLP for Potential Prediction

Update on the emulation of nuclear interaction models with Deep Learning

Learning the Potential: DL model Particle-wise MLP for Potential Prediction

Update on the emulation of nuclear interaction models with Deep Learning

- Building a DL model which:
 - is coherent with the Physics

Particle exchange symmetry embedded in the architecture

works with any number of particles
 Particles are treated in batch

Potential Predictions

Model:

5 layers MLP + ReLu + LayerNorm Data:

23k stories 10 events 24 particles : ~5 M examples Training: ~3d training on Nvidia V100

Results: Median Relative Error 0,05 %

Update on the emulation of nuclear interaction models with Deep Learning

Lorenzo Arsini - 09/10/2024 G4 Collaboration Meeting 2024 - Four Points Catania

Is it useful for QMD itself?

Recent development of LightlonQMD

Possibilities to improve the model — Currently bounded by

Can Deep Learning be applied to accelerate QMD?

Update on the emulation of nuclear interaction models with Deep Learning

execution time requirements

Implementation in Geant4

Exporting the DL models from pytorch to **ONNX**

Using ONNX C++ API

G4double MyQMDMeanField::GetPotential_dl(G4int i) return static_cast<G4double>(ONNXInterface::GetInstance()->Generate(i, system)[0]);

Update on the emulation of nuclear interaction models with Deep Learning

substituting GetPotential() Method in QMD

Thread-safe implementation

Test on the Potential

Simulating the reaction: C12 on C_nat at 62 MeV/u

Interfacing DL model with Geant4

 Reasonable accuracy on double differential cross section of lighter fragments

Update on the emulation of nuclear interaction models with Deep Learning

Test on the Potential

However: for heavier fragments

 Even small errors on the potential propagate badly to the double differential cross sections

• It is not the bottleneck!

Only 4% of QMD execution time

Update on the emulation of nuclear interaction models with Deep Learning

Another possibility **Derivatives of the Hamiltonian**

1) Cross sections are resilient to 1-2% errors

Callees	CPU Time: Total 🔻 🔌
MyQMDReaction::ApplyYourself	100.0%
G4QMDMeanField::DoPropagation	88.7%
G4QMDMeanField::CalGraduate	47.5%
G4QMDMeanField::Cal2BodyQuantities	40.5%

Update on the emulation of nuclear interaction models with Deep Learning

$\partial H \partial H$ Emulating $\partial a'$ др

2) This is the **bottleneck**!

CalGraduate() is **50%** of QMD

Emulating the derivatives

Same architectural design of the Potential model

 ∂H $\partial q, p$

$$-\approx \sum A_{ij} + \sum_{\alpha^{(k)}} \left(\sum B_{ij}^{(k)}\right)^{\alpha^{(k)}}$$

Approximating the derivatives

Hyper-parameter optimization on the number of terms K

Derivatives prediction

Model: 2 $\alpha^{(k)}$ terms + 5 layers MLP + ReLu + LayerNorm

Data:

12k stories

events
24 particles : ~300k examples

Training: ~3h training on Nvidia V100
Results: Median Relative Error 0,6 %

Update on the emulation of nuclear interaction models with Deep Learning

Implementation in Geant4

Exporting the DL models from pytorch to **ONNX**

Using ONNX C++ API

```
void MyQMDMeanField::CalGraduate dl()
   ffr.resize( system->GetTotalNumberOfParticipant() );
   ffp.resize( system->GetTotalNumberOfParticipant() );
                       PREDICT WITH DEEP LEARNING
  auto gradients = ( ONNXInterface::GetInstance()->Generate(system));
  ffr = gradients[0];
  ffp = gradients[1];
7
```

Update on the emulation of nuclear interaction models with Deep Learning

substituting CalGraduate() Method in QMD

Thread-safe implementation

Double differential cross sections

Running LoweFrag example:

Update on the emulation of nuclear interaction models with Deep Learning

C12 on C_nat at 62 MeV/u

Double differential cross sections

Running LoweFrag example:

Update on the emulation of nuclear interaction models with Deep Learning

C12 on C_nat at 62 MeV/u

Light Ion QMD

Update on the emulation of nuclear interaction models with Deep Learning

Lorenzo Arsini - 09/10/2024 G4 Collaboration Meeting 2024 - Four Points Catania

C12 on C12 at 95 MeV/u

Light Ion QMD Double differential cross sections

Running LoweFrag example:

Update on the emulation of nuclear interaction models with Deep Learning

C12 on C_nat at 95 MeV/u

Range of applicability

Until now:

What we want:

Metric to assess the double differential cross section consistency

$$\chi^{2} = \frac{1}{N_{bins}} \sum_{i}^{N_{bins}} \frac{(N_{i}^{(MC)} - N_{i}^{(DL)})}{N_{i}^{(MC)} + N_{i}^{(DL)}}$$

Update on the emulation of nuclear interaction models with Deep Learning

- Model trained and tested on the same reaction at the same energy
 - A model that works for any "reasonable" ions and energies

Lorenzo Arsini - 09/10/2024 G4 Collaboration Meeting 2024 - Four Points Catania

26

Update on the emulation of nuclear interaction models with Deep Learning

Chi Squared

Update on the emulation of nuclear interaction models with Deep Learning

Extending the training

65 75 85 95 105 115 125

Update on the emulation of nuclear interaction models with Deep Learning

Update on the emulation of nuclear interaction models with Deep Learning

Update on the emulation of nuclear interaction models with Deep Learning

- Easily extendible to any set of ions

Update on the emulation of nuclear interaction models with Deep Learning

Ν F Ne ()

• Training done on a subset of ions, with relatively few example each (~1k runs)

Next steps

Code speed-up

Leveraging GPU acceleration

Using NVIDIA TensorRT performance optimization

Update on the emulation of nuclear interaction models with Deep Learning

Current implementation (on CPU) is slower

Speed Up Inference by 36X

Optimize Inference Performance

Accelerate Every Workload

"NVIDIA TensorRT-based applications perform up to 36X faster than CPU-only platforms during inference"

Next steps

Code speed-up

Leveraging GPU acceleration

Using NVIDIA TensorRT performance optimization

Extension to BLOB

Update on the emulation of nuclear interaction models with Deep Learning

Next steps

Code speed-up

Leveraging GPU acceleration

Using NVIDIA TensorRT performance optimization

Extension to BLOB

Update on the emulation of nuclear interaction models with Deep Learning

QMD and **LiQMD** Optimisation

Fully differentiable pipeline:

Emulating de-excitation model

Thank you for your attention!

- Nuclear interaction models in Geant4:
 - Sophisticated models are slow
 - No dedicated model under 100 MeV/u
- Deep Learning approach for model emulation Emulation of Hamiltonian derivatives with DL for QMD Multi ion training to achieve generalization Possible model optimization or speed-up.

