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Project Targets

● Understand usability of GPUs for general particle transport simulation
○ Seeking potential speed up and/or usage of available GPU resources for HEP simulation

● Provide GPU-friendly simulation components
○ Physics, geometry, field, but also data model and workflow

● Integrate in a hybrid CPU-GPU Geant4 workflow
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GPU Simulation components

● Physics: G4HepEM
○ G4HepEM is a compact rewrite of EM processes, focusing on performance and targeted at 

HEP detector simulation applications
○ It was adapted for use on the GPU

● Geometry: VecGeom
○ GPU adaptation built on top of the original VecGeom GPU/CUDA support
○ Includes several GPU-focused improvements, like an optimised navigation state system, and 

a BVH navigator.
● Magnetic Field: Work in progress on a Runge Kutta field propagator

○ Currently only a uniform field with a helix propagator is validated
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Recent developments

● New method for Geant4 integration

● New method for scoring

● Refactoring of AdePT into a library
○ Previously, the project consisted on a series of mostly independent examples
○ There has been a major refactoring to reorganise the project into a library, simplifying 

integration into external applications
○ Example integration with the GeantVal HGCAL Test Beam app

● Gaussino Integration

● Progress towards an asynchronous AdePT backend

● Major development in VecGeom’s Surface geometry model
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Geant4 Integration

● Previously AdePT integrated into Geant4 applications using the 
Fast-simulation hooks

○ They provided an easy way to define a region for GPU transport
○ However, this approach is not flexible when trying to do GPU transport in multiple regions or 

even the complete geometry

● A new integration approach uses a specialized G4VTrackingManager
○ Much more customizable than the Fast-simulation hooks
○ Simplifies the integration from the user’s point of view
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Geant4 Integration

● AdePT Integration using the specialized AdePT Tracking Manager

○ The user only needs to register the AdePTPhysicsConstructor in their physics list

○ AdePT can be configured through an API or macro commands

○ We provided an example integration with the HGCAL Test-beam application developed by 
Lorenzo Pezzotti for geant-val, which can be seen in this PR

■ Besides the CMake integration of AdePT, there are minimal changes needed in the user 
application
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https://github.com/geant-val/HGCALTB/pull/19/files


Scoring

● Previously, the AdePT kernels included a simplified scoring that was done on 
device

○ Good for validation but not a realistic use case

● The current approach is sending back hit information, and calling the 
user-defined sensitive detector code on CPU

○ The sensitive volume information is taken from the geometry
○ The information coming from the GPU is used to reconstruct G4 steps
○ No changes to the user SD code are needed
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Gaussino Integration

● Gaussino is a framework allowing to configure and to steer the different phases of 
detector simulation

● It provides wrappers for the Geant4 physics constructors and allows to build the 
Geant4 modular physics list using a simple Python configuration

GaussinoSimulation(
    PhysicsConstructors=[
        "GiGaMT_AdePTPhysics",
        "GiGaMT_G4EmStandardPhysics",
        "GiGaMT_G4EmExtraPhysics",
        "GiGaMT_G4DecayPhysics",
        "GiGaMT_G4HadronElasticPhysics",
        "GiGaMT_G4HadronPhysicsFTFP_BERT",
        "GiGaMT_G4StoppingPhysics",
        "GiGaMT_G4IonPhysics",
        "GiGaMT_G4NeutronTrackingCut"])

● Gaussino has now been extended with such a 
wrapper for the AdePTPhysicsPhysicsConstructor
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Gaussino Integration

● Additional AdePT configuration can be passed through the Gaussino wrapper for 
Geant4 configuration macros

GiGaMTRunManagerFAC("GiGaMT.GiGaMTRunManagerFAC").InitCommands = [

   "/adept/setVecGeomGDML calochallenge.gdml",

   "/adept/addGPURegion CaloRegion" #"/adept/setTrackInAllRegions true"]

● Using the scoring mechanism discussed on slide 7
○ AdePT calls the appropriate Gaussino sensitive detectors to create hits as in a normal Geant4 

simulation 
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Gaussino integration - Calo Challenge setup

● Gaussino - AdePT integration has 
been successfully used for the Calo 
Challenge setup

● Physics results show a very good 
agreement with Geant4

● If there are enough particles sent to 
the GPU, the gains can be significant

○ Achieved 5x speedup with 4 CPU 
threads in initial tests with 
gamma-only events

○ these numbers can be considered as 
upper limits for real events
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Gaussino integration - issues and next steps

● AdePT integration through Gaussino works out of the box except…
○ Full MCtruth information is not available for GPU tracks
○ It is not possible to carry over custom ‘user track information’ on the GPU

■ But custom approaches could be implemented

● Next steps
○ Currently working on full LHCb setup with AdePT integrated through Gaussino

■ Working fine out of the box, with all LHCb sensitive detectors and monitoring functioning
● Debugging some discrepancy in the number of hits
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Major Issues

● We have identified two major performance bottlenecks: Geometry and kernel 
scheduling

○ The current solid-based geometry has two main issues on GPU:
■ The relatively large number of solid types causes warp divergence
■ The code is complex and register-hungry, which limits the maximum occupancy

○ The current approach to kernel scheduling blocks the calling thread while the GPU transports 
a batch of particles

■ This has a very visible effect when the GPU is saturated
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● For low numbers of threads, offloading the 
EM transport to the GPU gives some 
speedup.

● At a certain point the GPU becomes 
saturated. Geometry is a major factor in 
how early this happens

● Due to the current way of scheduling the 
kernel launches, this means that the GPU 
starts blocking the CPU threads
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Current performance results

GPU: Nvidia A100
Input: 4 TTBar per thread
Geometry: CMS2018



Asynchronous kernel scheduling

● Currently, CPU threads track particles across the geometry, and buffer EM 
particles entering marked GPU regions

● When the buffer is full, the thread triggers the transport on GPU

○ The caller blocks until the GPU finishes tracking

● As long as the GPU is not saturated this is inefficient, but we still see a 
speedup

● However when the GPU becomes slower, it stops the CPU from tracking 
particles in other regions
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Asynchronous kernel scheduling

● Asynchronous scheduling prototype

● Only one instance of AdePT running in the 
background

● It continuously runs the transport loop

● All G4 workers communicate with AdePT 
asynchronously

○ Host threads can continue with CPU work (e.g. Hadrons) 
while transport runs in the background
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Asynchronous kernel scheduling

● Promising results in early tests

● In this example, the GPU was never 
saturated

● The single-threaded speedup is 
preserved when increasing the number 
of threads

● This asynchronous mode will soon be 
integrated into AdePT
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● Simpler algorithms reduce register and stack usage

● Reduced number of primitives and lower complexity reduce divergence

● Potential to navigate using mixed precision

VecGeom surface model
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Status of the Surface Model

● Surface navigation already integrated into AdePT
○ Results pre-validated against solids
○ Similar performance to the solid model

■ Optimization still ongoing, with drastic performance improvements during the last months
■ Working on smaller AdePT kernels and a mixed-precision mode

Geometry: HGCAL Test Beam
Input: 2000 evt, 100 x 1GeV pi-



Summary and outlook
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● The G4TrackingManager and new approach to scoring make it easy to integrate into existing 
G4 applications

○ Further collaboration with experiments needed in order to find missing functionality and 
implement setup-specific solutions if needed

■  ATLAS AdePT/Celeritas integration hackthon on the 14th-18th October

● There are two major bottlenecks that affect the scaling behaviour

○ Poor GPU usage in the current solid-based geometry model

■ AdePT can already use the new surface model with correct results, further optimization 
is in progress

○ Suboptimal kernel scheduling

■ A new asynchronous mode is promising and will be implemented into AdePT in the near 
future


