
AdePT Status Report
Juan González for the AdePT team

9/10/2024

29th Geant4 Collaboration Meeting

1j.gonzalez@cern.ch



Project Targets

● Understand usability of GPUs for general particle transport simulation
○ Seeking potential speed up and/or usage of available GPU resources for HEP simulation

● Provide GPU-friendly simulation components
○ Physics, geometry, field, but also data model and workflow

● Integrate in a hybrid CPU-GPU Geant4 workflow

2



GPU Simulation components

● Physics: G4HepEM
○ G4HepEM is a compact rewrite of EM processes, focusing on performance and targeted at 

HEP detector simulation applications
○ It was adapted for use on the GPU

● Geometry: VecGeom
○ GPU adaptation built on top of the original VecGeom GPU/CUDA support
○ Includes several GPU-focused improvements, like an optimised navigation state system, and 

a BVH navigator.
● Magnetic Field: Work in progress on a Runge Kutta field propagator

○ Currently only a uniform field with a helix propagator is validated

3



Recent developments

● New method for Geant4 integration

● New method for scoring

● Refactoring of AdePT into a library
○ Previously, the project consisted on a series of mostly independent examples
○ There has been a major refactoring to reorganise the project into a library, simplifying 

integration into external applications
○ Example integration with the GeantVal HGCAL Test Beam app

● Gaussino Integration

● Progress towards an asynchronous AdePT backend

● Major development in VecGeom’s Surface geometry model

4



Geant4 Integration

● Previously AdePT integrated into Geant4 applications using the 
Fast-simulation hooks

○ They provided an easy way to define a region for GPU transport
○ However, this approach is not flexible when trying to do GPU transport in multiple regions or 

even the complete geometry

● A new integration approach uses a specialized G4VTrackingManager
○ Much more customizable than the Fast-simulation hooks
○ Simplifies the integration from the user’s point of view

5



Geant4 Integration

● AdePT Integration using the specialized AdePT Tracking Manager

○ The user only needs to register the AdePTPhysicsConstructor in their physics list

○ AdePT can be configured through an API or macro commands

○ We provided an example integration with the HGCAL Test-beam application developed by 
Lorenzo Pezzotti for geant-val, which can be seen in this PR

■ Besides the CMake integration of AdePT, there are minimal changes needed in the user 
application

6

https://github.com/geant-val/HGCALTB/pull/19/files


Scoring

● Previously, the AdePT kernels included a simplified scoring that was done on 
device

○ Good for validation but not a realistic use case

● The current approach is sending back hit information, and calling the 
user-defined sensitive detector code on CPU

○ The sensitive volume information is taken from the geometry
○ The information coming from the GPU is used to reconstruct G4 steps
○ No changes to the user SD code are needed

7



Gaussino Integration

● Gaussino is a framework allowing to configure and to steer the different phases of 
detector simulation

● It provides wrappers for the Geant4 physics constructors and allows to build the 
Geant4 modular physics list using a simple Python configuration

GaussinoSimulation(
    PhysicsConstructors=[
        "GiGaMT_AdePTPhysics",
        "GiGaMT_G4EmStandardPhysics",
        "GiGaMT_G4EmExtraPhysics",
        "GiGaMT_G4DecayPhysics",
        "GiGaMT_G4HadronElasticPhysics",
        "GiGaMT_G4HadronPhysicsFTFP_BERT",
        "GiGaMT_G4StoppingPhysics",
        "GiGaMT_G4IonPhysics",
        "GiGaMT_G4NeutronTrackingCut"])

● Gaussino has now been extended with such a 
wrapper for the AdePTPhysicsPhysicsConstructor

8



Gaussino Integration

● Additional AdePT configuration can be passed through the Gaussino wrapper for 
Geant4 configuration macros

GiGaMTRunManagerFAC("GiGaMT.GiGaMTRunManagerFAC").InitCommands = [

   "/adept/setVecGeomGDML calochallenge.gdml",

   "/adept/addGPURegion CaloRegion" #"/adept/setTrackInAllRegions true"]

● Using the scoring mechanism discussed on slide 7
○ AdePT calls the appropriate Gaussino sensitive detectors to create hits as in a normal Geant4 

simulation 

9



Gaussino integration - Calo Challenge setup

● Gaussino - AdePT integration has 
been successfully used for the Calo 
Challenge setup

● Physics results show a very good 
agreement with Geant4

● If there are enough particles sent to 
the GPU, the gains can be significant

○ Achieved 5x speedup with 4 CPU 
threads in initial tests with 
gamma-only events

○ these numbers can be considered as 
upper limits for real events

10



Gaussino integration - issues and next steps

● AdePT integration through Gaussino works out of the box except…
○ Full MCtruth information is not available for GPU tracks
○ It is not possible to carry over custom ‘user track information’ on the GPU

■ But custom approaches could be implemented

● Next steps
○ Currently working on full LHCb setup with AdePT integrated through Gaussino

■ Working fine out of the box, with all LHCb sensitive detectors and monitoring functioning
● Debugging some discrepancy in the number of hits

11



Major Issues

● We have identified two major performance bottlenecks: Geometry and kernel 
scheduling

○ The current solid-based geometry has two main issues on GPU:
■ The relatively large number of solid types causes warp divergence
■ The code is complex and register-hungry, which limits the maximum occupancy

○ The current approach to kernel scheduling blocks the calling thread while the GPU transports 
a batch of particles

■ This has a very visible effect when the GPU is saturated

12



● For low numbers of threads, offloading the 
EM transport to the GPU gives some 
speedup.

● At a certain point the GPU becomes 
saturated. Geometry is a major factor in 
how early this happens

● Due to the current way of scheduling the 
kernel launches, this means that the GPU 
starts blocking the CPU threads

13

Current performance results

GPU: Nvidia A100
Input: 4 TTBar per thread
Geometry: CMS2018



Asynchronous kernel scheduling

● Currently, CPU threads track particles across the geometry, and buffer EM 
particles entering marked GPU regions

● When the buffer is full, the thread triggers the transport on GPU

○ The caller blocks until the GPU finishes tracking

● As long as the GPU is not saturated this is inefficient, but we still see a 
speedup

● However when the GPU becomes slower, it stops the CPU from tracking 
particles in other regions

14



Asynchronous kernel scheduling

● Asynchronous scheduling prototype

● Only one instance of AdePT running in the 
background

● It continuously runs the transport loop

● All G4 workers communicate with AdePT 
asynchronously

○ Host threads can continue with CPU work (e.g. Hadrons) 
while transport runs in the background

15

G4 
Worker AdePT

G4 
Worker AdePT

G4 
Worker AdePT

G4 
WorkerG4 
WorkerG4 
Worker AdePT



Asynchronous kernel scheduling

● Promising results in early tests

● In this example, the GPU was never 
saturated

● The single-threaded speedup is 
preserved when increasing the number 
of threads

● This asynchronous mode will soon be 
integrated into AdePT

16



● Simpler algorithms reduce register and stack usage

● Reduced number of primitives and lower complexity reduce divergence

● Potential to navigate using mixed precision

VecGeom surface model

17

Dispatcher
(virtual)

Box

Tube

Cone

Polyhedron

Significant divergence in the solid model Reduced divergence using surfaces



Status of the Surface Model

● Surface navigation already integrated into AdePT
○ Results pre-validated against solids
○ Similar performance to the solid model

■ Optimization still ongoing, with drastic performance improvements during the last months
■ Working on smaller AdePT kernels and a mixed-precision mode

Geometry: HGCAL Test Beam
Input: 2000 evt, 100 x 1GeV pi-



Summary and outlook

19

● The G4TrackingManager and new approach to scoring make it easy to integrate into existing 
G4 applications

○ Further collaboration with experiments needed in order to find missing functionality and 
implement setup-specific solutions if needed

■  ATLAS AdePT/Celeritas integration hackthon on the 14th-18th October

● There are two major bottlenecks that affect the scaling behaviour

○ Poor GPU usage in the current solid-based geometry model

■ AdePT can already use the new surface model with correct results, further optimization 
is in progress

○ Suboptimal kernel scheduling

■ A new asynchronous mode is promising and will be implemented into AdePT in the near 
future


