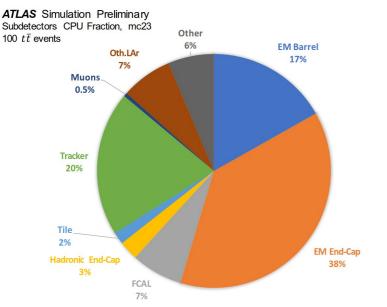
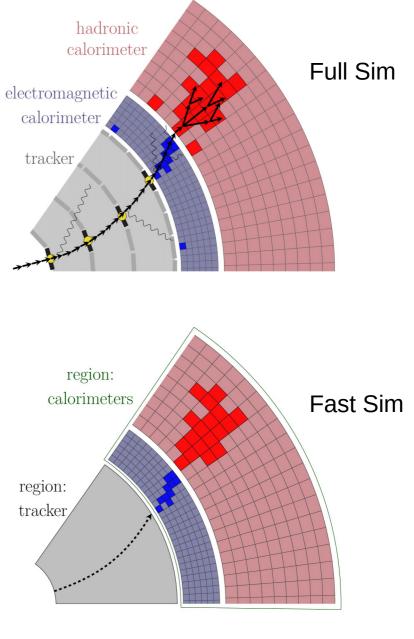
ML Fast Sim Developments

Peter McKeown, Piyush Raikwar, Anna Zaborowska CERN, EP-SFT


Geant4 Collaboration Meeting 2024


9.10.2024

Fast Simulation in HEP

- Current and future HEP experiments require ever larger quantities of simulated data
- Calorimeter shower simulation typically dominates compute time for full detector simulation
- Trade off some details from the full simulation for speed

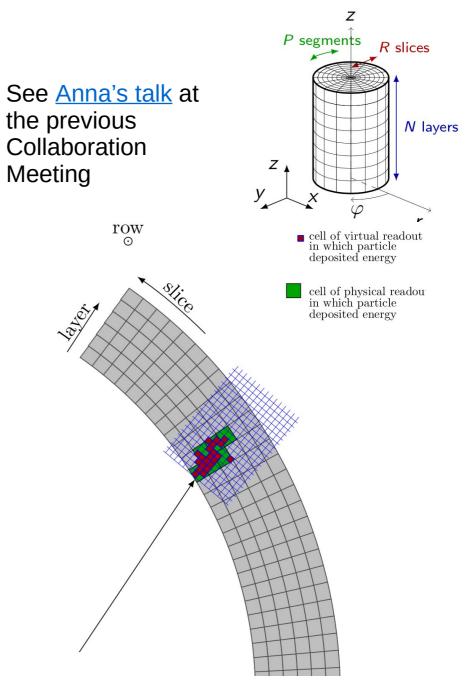
Optimizing the ATLAS Geant4 detector simulation for ACAT 2024. PLOT-SIMU-2024-03

Peter McKeown | Geant4 Collaboration Meeting 2024

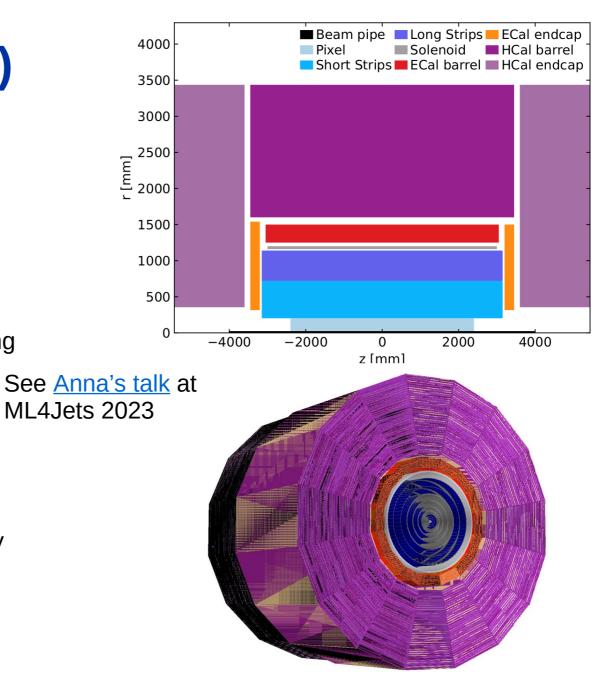
9.10.2024

ML Fast Simulation in HEP

- Generative ML models have seen significant attention for fast shower simulation
 - Used in production by ATLAS
 - Significant progress by LHCb and CMS
- Many developments have been experiment specific
 - Data representations
 - Models
 - Software ecosystems
- Difficult to propagate developments throughout the community
- In Geant4 we are perfectly placed to reach across experiments!



- ... but models ultimately have to be evaluated in terms of physics performance after reconstruction
 - Need to collaborate closely with experiments!

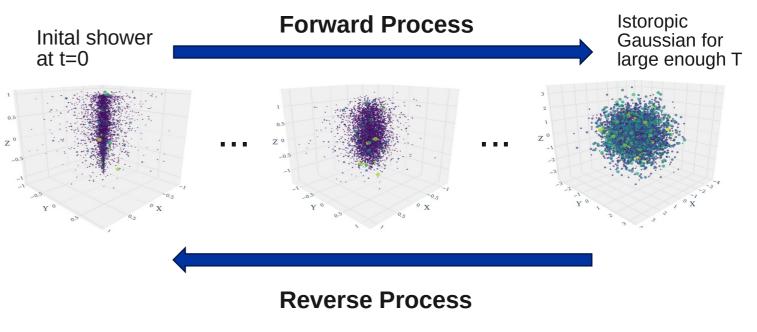

ML Fast Simulation in Geant4

- Geant4 provides the extended <u>Par04</u> example showing how to use **ML models in Geant4**
 - Virtual scoring mesh via parallel worlds
 - Inference libraries: ONNXruntime, libTorch, lwtnn
 - Can also be run on GPU (currently batch size 1)
- Datasets from Par04 provided the backbone for the <u>CaloChallenge</u> (2022)
 - Dataset 2: 6,480 voxels
 - Dataset 3: 40,500 voxels
- Provided a set of **common datasets and benchmarks** to enable the comparison of various ML models
- Total of **22** different models contributed
- Combined publication being finalised

Open Data Detector (ODD)

- <u>Open Data Detector</u>: an open-access detector for algorithmic development and benchmarking
- Detector is described with DD4hep a detector description toolkit used in HEP which provides an interface to Geant4
- Originally developed for the Tracking machine learning challenge (2018)
- ECAL (Si-W) and HCAL (Fe-Sci) with detailed geometries now implemented
- Plan to release open datasets for the next community challenge
 - Would also provide possibility to benchmark after reconstruction via DD4hep

More Generic Models: Motivation and Datasets

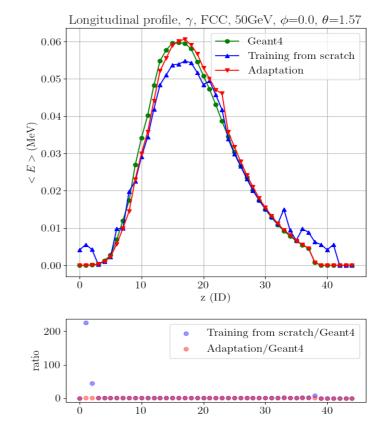

- Aim to reduce the computational resources required for developing an ML fast sim model
- Explore a 'foundation model' model approach:
 - Train the model once on a large dataset, consisting of numerous different detector geometries
 - Provide it to users for fast adaption to specific use case
- Need a common shower representation
 - Make use of the virtual scoring approach from Par04
 - Electromagnetic showers to begin with
- Currently explored geometries (1M showers each):
 - Par04 SiW
 - Par04 SciPb
 - ODD
 - FCCee: CLD
 - FCCee: Allegro

CaloDiT: Model Architecture

• **Diffusion Transformer** (CaloDiT) model developed in EP-SFT (P. Raikwar) in collaboration with CERN Openlab and IBM Research (inspired by arXiv:2212.09748)

- Diffusion model:
 - Learn to gradually remove noise from data to generate shower
- Attention
 - Mechanism for modeling longrange correlations (adopted from NLP applications)

CaloDiT: Results

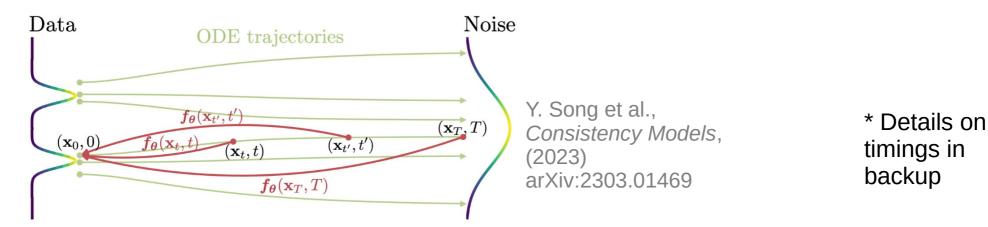

- Impressive performance in terms of physics
 observables
 - And adapting to new geometry is faster than training from scratch!
 400K samples

Longitudinal profile, γ , FCC, 50GeV, $\phi=0.0, \theta=1.57$

0.06Geant4 At 200K samples Training from scratch Adaptation ~25x less training time 0.05<50% of the data 0.04E > (MeV)0.020.010.00 2030 10 40z (ID) Training from scratch/Geant4 Adaptation/Geant4 ratio G 30 0 102040

However, iterative denoising (400 steps) makes inference slow...

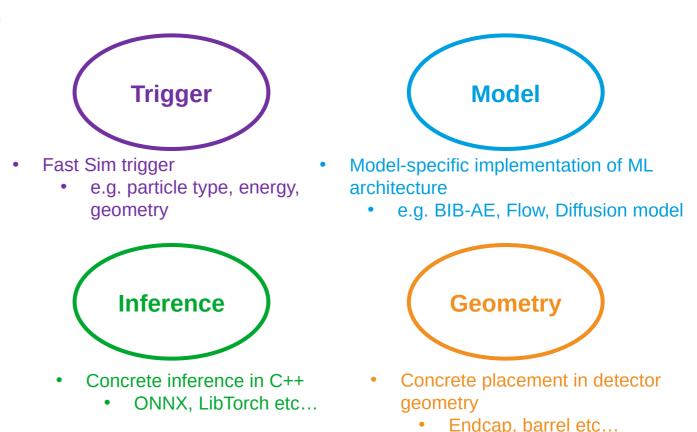
200K samples



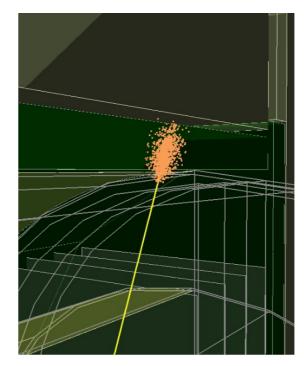
CaloDiT: Distillation

M. Piórczyński

- Number of diffusion steps dominates inference (i.e. shower generation) time- explored approaches to distill CaloDiT model
- With consistency model, maintain physics performance with single diffusion step
- Significant speed-up achieved with respect to full simulation
 - For single photons (standalone inference)*: single core CPU ~1 order of magnitude faster


- GPU usage could (significantly) improve this yet further

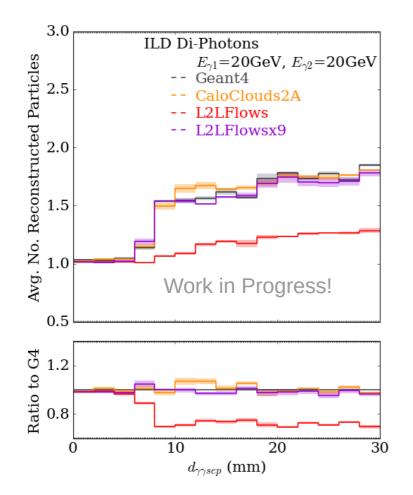
DD4hep Integration: DDFastShowerML

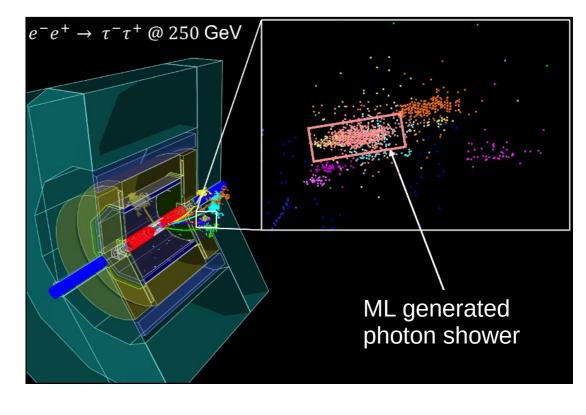

- DD4hep toolkit widely used by future collider projects (FCC, CLIC, ILC, CEPC, IMCC, EIC...) via common Key4hep turnkey software stack
- Generic library <u>DDFastShowerML</u> recently included in Key4hep
 - Uses fast sim hooks in Geant4 via DDG4
 - Can be used with realistic, detailed detector models

 Aim for easy to use library which can accommodate all types of ML architectures

DD4hep Integration: DDFastShowerML

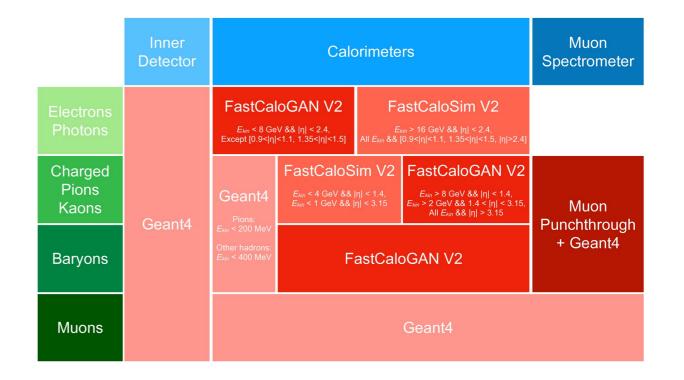
- DD4hep toolkit widely used by future collider projects (FCC, CLIC, ILC, CEPC, IMCC, EIC...) via common Key4hep turnkey software stack
- Generic library <u>DDFastShowerML</u> recently included in Key4hep
 - Uses fast sim hooks in Geant4 via DDG4
 - Can be used with realistic, detailed detector models
- Aim for easy to use library which can accommodate all types of ML architectures
- Initial validation of CaloDiT in scoring mesh (C. Zhu) integrated for FCCee CLD
 - Placement into detector readout (similar to G4 parallel worlds) is WIP




CaloDiT photon shower simulated in CLD with DDFastShowerML

Common Physics Benchmarks for Future Colliders

- With integration in DD4hep, now possible to define common physics benchmarks
- We are working with the community to start to define a common set


With input from T. Buss and A. Korol

Collaboration with Experiments: ATLAS

Courtesy: J. F. Beirer

- ATLAS is already using generative models (FastCaloGAN) in production for Run 3 via AtlFast3
- Currently embedded in the Integrated Simulation Framework (**ISF**) to enable the use of multiple simulators in ATHENA

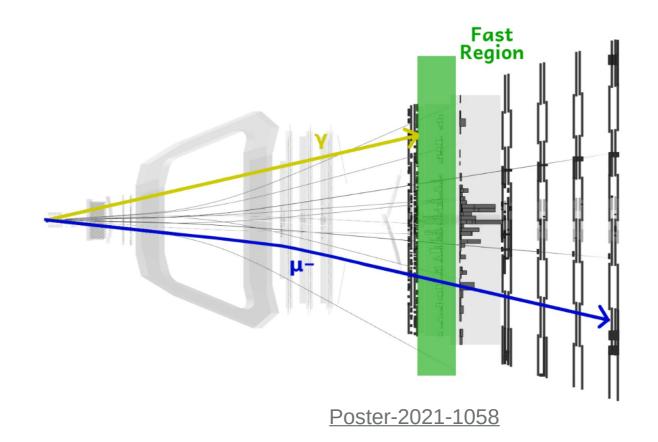
PLOT-SIMU-2024-04

See more in Joshua's talk at ACAT 2024

Collaboration with Experiments: ATLAS

Courtesy: J. F. Beirer

- ATLAS is already using generative models (FastCaloGAN) in production for Run 3 via AtlFast3
- Currently embedded in the Integrated Simulation Framework (**ISF**) to enable the use of multiple simulators in ATHENA
- Significant progress made on migrating to Geant4 fast sim hooks!
- Recently strengthened collaboration between EP-SFT and ATLAS Simulation Group to prepare the next generation of ATLAS FastCaloSim
 - Informed by CaloChallenge, **compare set of** • different models to current FastCaloGAN (including CaloDiT)


See more in Joshua's

talk at ACAT 2024

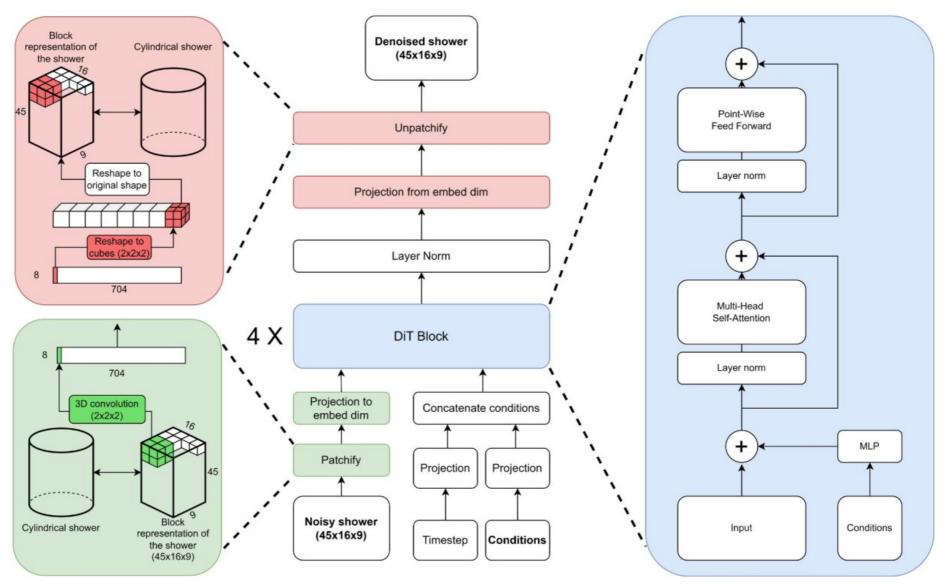
Collaboration with Experiments: LHCb

Courtesy: M. Mazurek

- Significant progress on integrating CaloChallenge-like geometries into Gaussino
- Have so far explored a custom VAE as a 'pilot' model for e+/- and gamma for p=0.1-1000 GeV
 - In future can explore other CaloChallenge models
- Detailed **physics validation** for 4 different channels with significant electromagnetic component
- High level of agreement between Geant4 and ML
 - More details in Michał's upcoming CHEP talk

Summary

- Significant progress on ML fast sim
- Supporting community efforts:
 - CaloChallenge (heavy use of Par04) in final writeup stage
 - Significant contributions to the Open Data Detector
- Model R&D efforts
 - Exploring the potential of a more general approach to fast sim (CaloDiT)
 - Distillation of CaloDiT to achieve speed-up


- Directly collaborating with experiments
 - ATLAS: develop next generation of fast calorimeter simulation
 - LHCb: Detailed physics validation of CaloChallengelike fast sim
 - Future Colliders: contributions to common library and physics benchmarks
 - CMS: Actively engaging to support fast sim efforts

CaloDiT: Model Architecture

CaloDiT: Results

0.0000 -

46000

47000

48000

 E_{dep}

49000

Longitudinal profile, γ , Par04, 50GeV, $\phi=0.0$, $\theta=1.57$ Longitudinal first moment, γ , Par04, 50GeV, $\phi=0.0$, $\theta=1.57$ Longitudinal second moment, γ , Par04, 50GeV, $\phi=0.0$, $\theta=1.57$ 0.08 -- Geant4 -- Geant4 - Geant4 0.010 ---- Single training ---- Single training → Single training 0.07---- Joint training ---- Joint training Joint training 0.08 0.008 0.06 0.06 $\stackrel{(n)}{\longrightarrow}_{0.04}^{0.05}$ _∞ 0.006 Entries 0.04 Entrie E >0.004V 0.03 0.02observables 0.02 0.002 (Par04): training on 0.010.00 0.000 multiple different 0.00 -.... 10 20 30 20 30 40 50 60 70 100 200 300 400 500 600 40 - 0 0 $<\lambda^2>(mm^2)$ geometries vs one z (ID) $<\lambda>$ (mm) Cell energy distribution, γ , Par04, 500GeV, $\phi=0.0, \theta=1.57$ Energy deposited, γ , Par04, 50GeV, $\phi=0.0$, $\theta=1.57$ Cell energy distribution, γ , Par04, 50GeV, $\phi=0.2$, $\theta=2.1$ - Geant4 - Geant4 -- Geant4 — Single training ---- < E > = 48440.44→ Single training ---- Joint training ---- Single training Joint training < E > = 48169.460.0004---- Joint training 10^{-} 10^{-1} ---- < E > = 48181.590.0003 10^{-} 10^{-1} Sut Ent 0.0002 10^{-} 10^{-1} 10^{-1} 0.0001 10^{-} 10^{-5}

 10^{-}

Peter McKeown | Geant4 Collaboration Meeting 2024

50000

51000

-3

-2

-1

 $\log 10(E//MeV)$

Additional

-3

-2

 $^{-1}$

9.10.2024

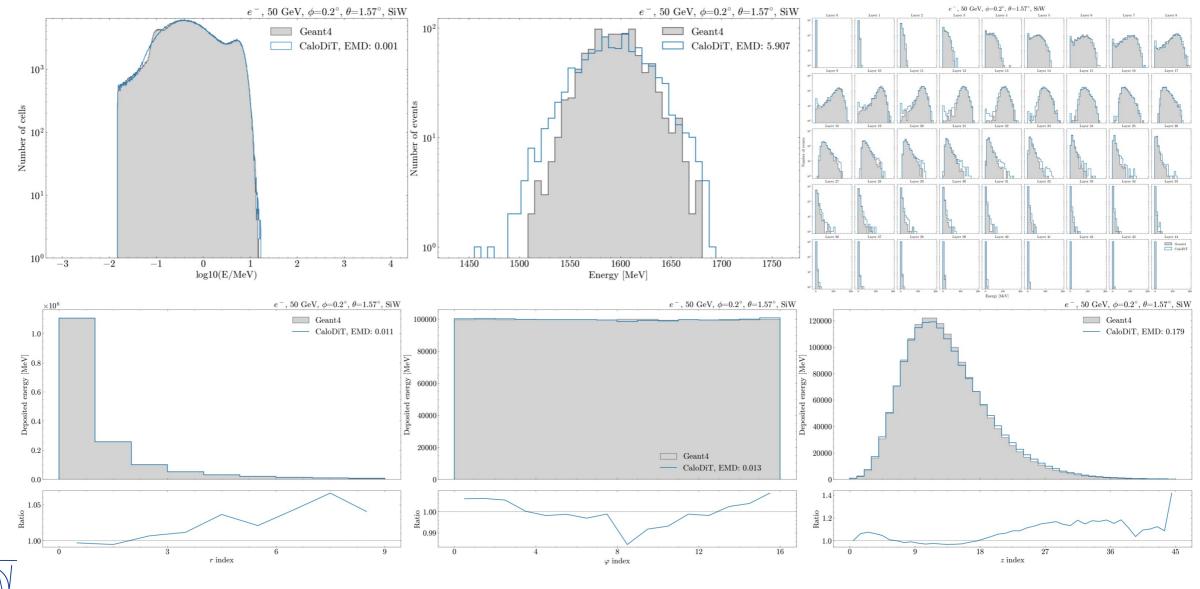
Ó

 $\log 10(E//MeV)$

CaloDiT: Distillation

M. Piórczyński

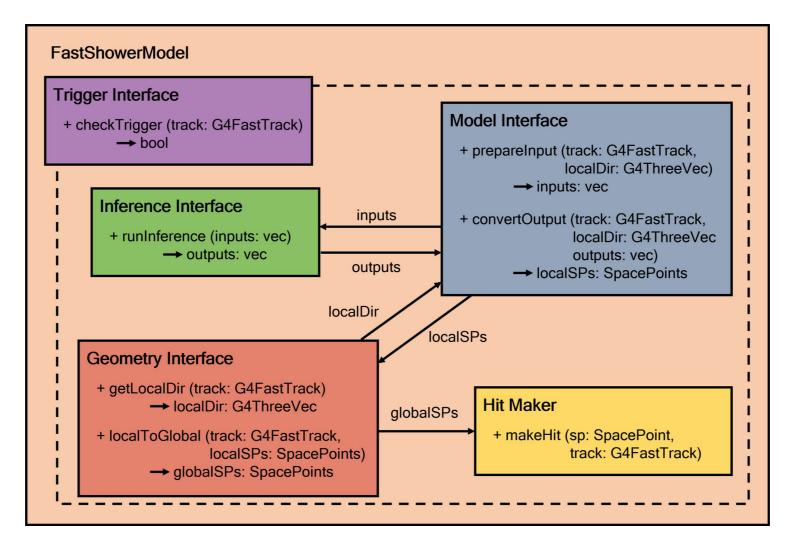
- Number of diffusion steps dominates inference (i.e. shower generation) time- explored approaches to distill CaloDiT model
- With consistency model, maintain physics performance with single diffusion step


 First look at single photon timings 	Method	Device	Batch size	Time/Shower [ms]	Speed-up	Energy Range
	Geant4 (Par04/ODD	CPU (single core)	N/A	1800-2300	x1	1-100 GeV (flat) (`)
CPU: AMD EPYC 7282 16-core processor	Geos)			18300-22000	x1	1-1000 GeV (flat) (``)
	CaloDiT (1 step consistency)	CPU (single core)	1	158.7±0.9	x11-14	`
 NVIDIA Quadro RTX 8000 with 48 GB of memory 					x115-139	**
		CPU (multi- core)	1	25.4±0.3	x71-91	`
 Caveat: Model inference timings are standalone! 					x720-866	~~
		GPU	64	1.31±0.01	x1374-1756	`
					x13969-16794	~~

CaloDiT: Distillation

CÈRN

M. Piórczyński



Peter McKeown | Geant4 Collaboration Meeting 2024

9.10.2024

21

DD4hep Integration: DDFastShowerML

