
Generic Processes & Material Session 

 
Marc Verderi, LLR, Ecole polyechnique 

Geant4 Catania Collaboration Meeting 

7 – 11 October 2024 



Overview 

 G4XxxxGeneralProcess & Generic Biasing 

 Xxxx = Gamma or Neutron 

 Geometry Importance Biasing & Generic Biasing 

 Physics Process Biasing & Final State Case 

 

 



G4XxxxGeneralProcess & Generic Biasing 
Xxxx = Gamma or Neutron 

 G4XxxxGeneralProcess improves CPU performances @ no cost on physics 
 G4GammaGeneralProcess now used as default (in all std EM phys. lists ?) 

 G4NeutronGeneralProcess pending, as clashing with GB in examples 

 To bias a physics process, GB wraps it, to possibly substitute, on user’s demand, 
interaction law and/or final state generation with a biased version 
 Changing the interaction law can be made generically 

 Changing the final state generation is an other story (see after) 

 There is (a priori) no show-stopper for GB to use G4XxxxGeneralProcess 

 But we should discuss if: 
 We consider G4XxxxGeneralProcess to be biased as a whole 

○ In what case, we “just” need to create new GB classes (in examples), adapted to general processes 

○ I would advocate then for options to create, eg, FTFP_BERT with/without general processes 
 To avoid an inflation of number of physics lists 

 And to make clear that the physics content is the same 

 We wish GB to control G4XxxxGeneralProcess sub-processes 
○ In what case we need to define a G4VGeneralProcess interface 

 To give access to sub-processes 

 And to avoid dependencies of processes/biasing onto other processes domain   



Geometry Importance Biasing & Generic Biasing 
 Geometry Importance Biasing was the first biasing technique offered in Geant4 

 “Importance values” Ivolume are assigned volumes and used for 
 splitting (if Inext volume > Ivolume) or 

 Russian-roulette-killing (if Inext volume < Ivolume) 

 the tracks that reach cell/volume boundaries 

 In short : 
 Importance values are defined in cells 

 These importance values are associated to a particle type 

 A dedicated process use these importance values to apply the biasing 

 Long pending discussion on how to “unify/merge” GIP and GB 
 Note : GB03 provides a flexible geometry importance based example, independent of the Geometry Importance 

Biasing design 

 Main idea: 
 Allow usage of (user) existing Geometry Importance Biasing setups in GB with small/minimal changes  

 Initial idea was to provide an example for this 
 But appears as a too naïve approach 

 Because Geometry Importance Biasing classes carry quite interplay between the importance values, the process 
and the particle type handlings 

 In short “just taking the importance values setup” is not possible 

 Need to separate things in the Geometry Importance Biasing classes  
○ G4VIStore with a singleton derived class G4IStore : to store the importance values of the “cells” 

○ G4GeometrySampler : to associate a geometry (mass or parallel) to a particle type (by name) 

 So, some work is needed to make this possible 



Physics Process Biasing & Final State Case 
 GB provides hooks to bias physics processes 

 PostStep biasing 
○ Biasing of interaction probability 

○ Biasing of final state 

 Same for Along 

 To be done for AtRest 

 Biasing of interaction probability 
 Generic approach is possible 

○ As underneath law is the classical exponential one 

 Formalism applies to both neutral and charged particles 
○ In short, giving 𝜎 ℓ  or 𝑝 ℓ  or 𝑃𝑁𝐼 ℓ  is enough to define the interaction law (each of these can be 

transformed in the others) 

○ And biasing simply consists in replacing the analog version of these by a biased one.  

 Biasing of charged particles interaction law can be made based on an “à la Woodcock” approach  

 Biasing of final state is difficult 
 Because there is no generic “final state” class 

 Would require a generic differential cross-section class 

 But some popular techniques (eg: DXTRAN) only requires 1  1 differential cross-section (elastic) 
○ Having at least a generic solution for low multiplicities would help  

 


