
Ben Morgan (The University of Warwick)

Recap on Geant4 Multithreading

Geant4 Collaboration Workshop

Ben Morgan (The University of Warwick)

Ben Morgan (The University of Warwick)

Wait, isn’t Geant4 multithreading done?

● Several topics in development and R&D are touching the multithreading
system, so a recap of the technology and issues is worthwhile
○ Possible 4th Technical Paper would cover Tasking, ideally also lead to Tech Note

○ Remember that the Geant4 MT system and design has stood test for a decade now!

● Subevent parallelism
○ Sequential events, split into subevents (groups of tracks) per thread/task

○ See next presentation from Makoto

● Initialization in parallel
○ Geometry, physics tables

○ Working session tomorrow afternoon

● Only a very high level overview of core aspects and debugging tools,
see the Toolkit Developer’s Guide for a more in depth guide on thread
local memory management types in particular.

2

https://geant4-userdoc.web.cern.ch/UsersGuides/ForToolkitDeveloper/html/OOAnalysisDesign/Multithreading/mt.html

Ben Morgan (The University of Warwick)

High Level Structure

3

● Memory-consuming common
data (geometry, physics) uses
“Split Class” mechanism for
thread-safety
○ Read-only part shared globally
○ Read-write part in thread-local

storage
● In pseudocode:

struct G4SplitClass
{
 G4GlobalShared a_;
 G4Split<G4ThreadPrivate> b_;
};

Toolkit Developer’s Guide: Memory Handling

https://geant4-userdoc.web.cern.ch/UsersGuides/ForToolkitDeveloper/html/OOAnalysisDesign/Multithreading/mt.html#memory-handling-in-geant4-version-10-0

Ben Morgan (The University of Warwick)

Aside: G4Allocator and Thread-Local Storage

● G4Allocator provides fast memory pool allocation, typically used to
implement new/delete operators for very frequently constructed classes
○ E.g. G4Track, hits collections

● Being shared between all instances of a given type, they are thread-local:

● Thus instances allocated this way on a thread A cannot be deallocated
on another thread B

4

G4Allocator<G4Track>*& aTrackAllocator() {
 G4ThreadLocalStatic G4Allocator<G4Track>* _instance = nullptr;
 return _instance;
}

inline void* G4Track::operator new(std::size_t) {
 if(aTrackAllocator() == nullptr) aTrackAllocator() = new G4Allocator<G4Track>;
 return (void*) aTrackAllocator()->MallocSingle();
}

Aside-to-Aside: Note odd static construction! Possibly a no longer needed
optimization.

Ben Morgan (The University of Warwick)

The Basic MT Initialization/Event Loop sequence

● Essentially identical for Classic (std::thread) and Tasking (PTL library)
● Differences down to Classic manually managing the thread

creation/destruction, whilst Tasking defers this to a thread pool in PTL
● Initialization is done in two steps:

○ Construct geometry, physics data on main thread

○ Start worker threads, copying/setting up thread-local data to/on them

○
○
○
○
○

● Same end result: Local run manager and data setup on each thread
5

Classic Mode:
● G4MTRunManager creates 1-N G4Threads
● Each thread executes

G4MTRunManagerKernel::StartThread(...)
○ Sets up data, then waits for work requests in

G4WorkerRunManager::DoWork()

Tasking Mode:
● G4TaskRunManager creates a PTL::TaskManager
● G4TaskRunManagerKernel::InitializeWorker()

executed on each thread in pool
○ Sets up data and finishes (no waiting)

● No tasks: have to guarantee run on all threads

Ben Morgan (The University of Warwick)

MT Event Loop 1: std::thread

● BeamOn: main run manager requests worker threads start a new run
○ Remember that threads waiting on requests in G4WorkerRunManager::DoWork()

○ Managed by G4MTBarrier, ultimately std::condition_variable (s)

● Threads each start their own event loops
○ Number of events each thread will process not determined a priori

○ Loop calls SetUpAnEvent/SetUpNEvents of main thread’s run manager, which
returns false if no more events are to be processed, thread then terminated its loop

○ Is a syncronization point for event ids and corresponding random number seeds

● On event loop termination for a thread
○ It notifies main thread run manager that it’s done

○ Main thread blocks until all worker threads finished

6

Ben Morgan (The University of Warwick)

MT Event Loop 2: Tasking
● BeamOn: ultimately call to G4TaskRunManager::CreateAndStartWorkers()

○ At this point, threads in PTL::ThreadPool just waiting for tasks
○ Task creation/management handled by PTL::TaskManager/Group

● Number of Tasks nominally √NEvent to evenly distribute work(*)

● Task == wrapped call of G4TaskRunManagerKernel::ExecuteWorkerTask(), submitted
to the PTL::TaskManager for execution on some thread in the pool
○ Just confirms thread-local run manager exists, calling the

G4WorkerTaskRunManager::DoWork() member function

○ Fundamentally same operations as G4WorkerRunManager::DoWork() in Classic
● (*) …but only the first NThread Tasks usually process events, rest are “empty”

○ Like Classic MT, Tasks query main thread run manager to determine if there are still
events to process

● G4TaskRunManager::CreateAndStartWorkers() submits Tasks to PTL::TaskManager,
and then calls wait() to block until completion
○ Underlying synchronization uses std::promise/future, Tasks return void

7

Ben Morgan (The University of Warwick)

Contrasting the two MT Systems

● Memory management essentially identical in terms of having per thread run
managers and split data
○ Classic mode theoretically has better guarantees of lifetime of these as it owns threads

○ Threads could leave Tasking’s PTL::ThreadPool, depending on how this is managed (e.g.
by experimental frameworks)

● Event loops structurally the same, key difference in synchronization
○ Classic: G4MTBarrier and std::condition_variable

○ Tasking: std::promise/std::future, though largely hidden by PTL interface

● Nominally Tasking workflow cleaner/more obvious, but still have
worker-main thread communication due to Event ID/Seeds distribution
○ Tasks not used in worker thread initialization phase due to requirement that this is

executed on all threads in the underlying pool

○ However, mechanism for running these is identical in concept to Tasks (pass a callable
“thing” to something that will run it at a later point in time)

8

Ben Morgan (The University of Warwick)

PTL/Tasking Examples for Geant4 Developers

● PTL is a very simple library to use, the only gotcha usually to do with
copy/move of objects (see https://github.com/jrmadsen/PTL/issues/49)
○ … but the same as raw std::thread, so consistent with its behaviour.

● Kick started by Issue 22 on initialization in parallel, prepared some basic
examples of PTL use:
○ Branch and README on GitHub

○ Further info in comments on Issue 22

● Should cover most Geant4 use cases except for sending data to a
thread-shared object (locking), though this is trivial to try out yourself!
○ ptl_vector_subtask.cc additional shows ability for Tasks to create Tasks themselves

○ Specialized use case, possibly less relevant in event loop if pool takes all threads, but
capability is there.

9

https://github.com/jrmadsen/PTL/issues/49
https://gitlab.cern.ch/geant4/geant4-dev/-/issues/66
https://github.com/drbenmorgan/PTL/tree/examples-for-geant4/
https://github.com/drbenmorgan/PTL/tree/examples-for-geant4/examples/geant4
https://gitlab.cern.ch/geant4/geant4-dev/-/issues/66#note_8314741
https://github.com/drbenmorgan/PTL/tree/examples-for-geant4/examples/geant4#ptl_vector_subtaskcc

Ben Morgan (The University of Warwick)

MT Debugging: Using Thread Sanitizer

● Two or more threads accessing same memory with at least one access
being a write is a data race
○ Can be tricky to trigger/reproduce due to relative timing/sequencing of threads

○ Thankfully, GCC and Clang provide a tool, ThreadSanitizer , which instruments code
to detect these in an application run

● Geant4 and example/integration tests can be built with this enabled via:

10

$ cmake \
 -DGEANT4_BUILD_SANITIZER=thread \
 -DGEANT4_USE_PTL_LOCKS=ON \
 -DCMAKE_BUILD_TYPE=RelWithDebInfo \
 -DGEANT4_ENABLE_TESTING=ON \
 … any other arguments …

Avoids warnings from PTL internals (see
MR 1744 for background)

Ensure debugging into attached, so
sanitizer will report code line numbers

https://github.com/google/sanitizers/wiki/threadsanitizercppmanual
https://gitlab.cern.ch/geant4/geant4-dev/-/merge_requests/1744

Ben Morgan (The University of Warwick)

MT Debugging: ThreadSanitizer-enabled applications

● Examples/Tests in build of Geant4 also have ThreadSanitizer enabled, but
to use it in external applications linking to Geant4, appropriate
compile/link flags are needed.

● If you’re using CMake, then these are in the GEANT4_CXX_FLAGS CMake
variable:

● Otherwise the relevant flags to compile/link with are:
○ -fno-omit-frame-pointer -fsanitize=thread

11

find_package(Geant4 …)
string(APPEND CMAKE_CXX_FLAGS ” ${GEANT4_CXX_FLAGS}”)
…

Ben Morgan (The University of Warwick)

MT Debugging: Checking for data races

● Simply run the application under test with any arguments needed, for
example
○ ctest -VV -R example-bas-b1
○ ./exampleB1 exampleB1.in

● Note that the instrumentation does introduce a runtime penalty
○ Documentation states “...memory usage may increase by 5-10x and execution time

by 2-20x.”

● Runtime flags may be passed in the TSAN_OPTIONS environment variable
to adjust reporting and behaviour
○ See the relevant page of the ThreadSanitizer documentation

12

https://github.com/google/sanitizers/wiki/threadsanitizercppmanual#runtime-overhead
https://github.com/google/sanitizers/wiki/threadsanitizercppmanual#runtime-overhead
https://github.com/google/sanitizers/wiki/ThreadSanitizerFlags

Ben Morgan (The University of Warwick)

MT Debugging: Example ThreadSanitizer report

13

Locations of race
read/write

Detailed thread
creation/tracing

Ben Morgan (The University of Warwick)

Questions, comments…

1414

struct G4SplitClass
{
 G4GlobalShared a_;
 G4Split<G4ThreadPrivate> b_;
};

Toolkit Developer’s Guide: Memory Handling

https://geant4-userdoc.web.cern.ch/UsersGuides/ForToolkitDeveloper/html/OOAnalysisDesign/Multithreading/mt.html#memory-handling-in-geant4-version-10-0

