





Instituto de Ciencias de la Computación





# Status, optimisations and new tools for quantized steppers in Geant4 (QSStepper)

#### <u>Rodrigo Castro, Matías Grynberg Portnoy,</u> Alejandro Mignanelli, Gerónimo Romczyk and Lucio Santi

University of Buenos Aires and ICC-CONICET, Argentina. rcastro@dc.uba.ar



XXIX Geant4 Collaboration Meeting Catania, Italy October 7-11, 2024



### Outline

- 1. Main Motivation for quantization-based stepping in Geant4
- 2. Quick refresher on QSS (more in the backup slides)
- 3. Milestone: QSS in the Geant4 11.2 release (Dec. 2023)
- 4. Progresses with new experimental versions of QSS
  - Automated benchmarking toolkit
  - Benchmarks with the ATLAS detector (FullSimLigth toolik)
  - New experimental flavors of the QSS family [Matías Portnoy]
- 5. Conclusions

### Motivation



- Simulation domain: Tracking of subatomic particles
  - Undergoing physics processes within 0 complex detector geometries
- **Key issue:** Handling of boundary crossings across discrete volumes
  - Can require **CPU-intensive ad-hoc iterative algorithms** Ο
  - Can we do better?  $\cap$
- **Approach:** Family of hybrid (continuous/discrete-event) integrators
  - **Quantized State System (QSS) numerical methods** Ο
  - **Attractive performance features** for HEP applications Ο



October 7, 2024 Rodrigo Castro, University of Buenos Aires

#### G4PropagatorInField::ComputeStep



Synthetic benchmark

radius: 45 mm Geometry: Parallel planes G4 params: epsilon = 1E - 7deltaChord = 0.25 mm stepMax = 20 mm trackLength = 1000 m

### Quantized State System (QSS) numerical methods

- Based on **state variables quantization**
- QSS methods discretize the system state variables as opposed to classical solvers which discretize the time (e.g. family of Runge-Kutta methods)
- **Continuous state variables** are approximated by **Quantized state variables** 
  - A quantization function is in charge of controlling error and accuracy throughout the simulation

$$\underbrace{\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(\mathbf{t}))}_{\text{ODE system}} \Rightarrow \underbrace{\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{q}(\mathbf{t}))}_{\text{ODE quantized system}}$$



## Higher order QSS

$$q_i(t) = egin{cases} x_i(t) & ext{if } \left| q_i(t^-) - x_i(t) 
ight| \geq \Delta Q_i \ q_i(t^-) & ext{otherwise} \end{cases}$$



- $\Delta Q_i$  is the **quantum** 
  - Maximum deviation allowed between x<sub>i</sub> and q<sub>i</sub> (error control)
  - Derived from the **accuracy** demanded by the user
- Higher order QSS methods (QSSn) follow a similar principle
  - In a QSS1 method, *q(t)* follows
     piecewise constant trajectories
  - In a QSSn method, q(t) follows
     piecewise (n-1)-th order polynomial
     trajectories

Asynchronous **discrete events** No "regular" time steps



### Main QSS features for HEP problems

- Inherent asynchronicity
  - Decoupled, independent computation of changes in each state variable (no "global clock")
- Dense trajectory output
  - Supported by piecewise polynomial approximations of trajectories
- Lightweight discontinuity handling
  - Boundary crossings detected by <u>lightweight detection of</u> simple polynomial roots





### CMS Benchmark results

- Experimental results
  - CMS full Run 1 geometry

**Geant4 simulation time split:** 

- Single  $\pi$  particles, Physics list FTFP\_BERT
- o 100 independent runs, 2000 particle gun events
- QSS2 vs. DOPRI
  - o 62 runs favorable for QSS; 38 for Geant4
  - Avg. End to End speedup: ~1% (max. ~10%)
  - Avg. Stepping speedup: ~15% (max. ~20%)
- QSS2 vs. RK4

8% of end-to-end

(theoretical limit for

performance gain)

- 77 runs favorable for QSS; 23 for Geant4
- Avg. End to End speedup: ~1.5% (max. ~8%)

particle

propagation

(stepping)

other (e.g. physics interactions or geometry definition)

traiectory

calculation

boundary crossing

detection

• Avg. Stepping speedup: ~23% (max. ~30%)







end-to-end simulation

### Timeline (simplified)

- 2019-2020 Initial ideas, exploration of viability (10.5)
  - Toy examples
- 2021-2022 First Implementations and version upgrades (10.7, 11.0, ...)
  - Geant4 official suite of test examples

#### • 2023 - QSS Stepper first incorporated into a Geant4 public release (11.2.0)

- Submitted to the Geant4 Testing and Quality Assurance process
- v11.2.0, December 8th, 2023, <u>https://geant4.web.cern.ch/download/release-notes/notes-v11.2.0.html</u>
- 2024 Current work: optimisations, housekeeping, research
  - Code cleaning, better documentation, more examples covered
  - Debugging of known issues (QSS3 debugging still pending)
  - Tooling: Automated benchmarking framework for QSS steppers
  - Optimised default steppers: codenames **new**QSS2, **new**QSS3
  - New experimental flavors: codenames **HelixMixed**QSS2, **Rotation**QSS2
  - ATLAS first tested (FullSimLight, FSL toolkit)

## New: Logging for error assessment

- Calculation of the Mean Square Error (MSE) for x(t), y(t), z(t) and the Track Length L(t)
- Thorough systematic comparison of deviation between methods for different accuracies
- Interpolation of asynchronous time series
- E.g.: QSS2 vs DOPRI

```
dQRel=1e-5, dQMin=1e-6
X_MSE = 1.64
Y_MSE = 0.00072
Z_MSE = 0.0014
L_MSE = 0.0
```



y (mm)

(A. Mignanelli)

PML 1 (Interpolado)
 PML 2 (Interpolado)

OSS2

t (sec)

t (sec)

t (sec)

DOPRI

G4 Extended Example field03

### Examples tested

- Examples taken from the Geant4 Examples testing validation suite <u>https://geant4-userdoc.web.cern.ch/Doxygen/examples\_doc/html/index.html</u>
- Examples considered:
  - Basic: **B2a, B2b, B4c, B4d, B5**
  - Extended: **field01, field03**
  - Advanced: ams\_Ecal
- Examples **not** considered
  - Basic: B1, B3, B4a, B4b
  - Extended: F02, F04, F05, F06
- Tests with models of Full Detectors:
  - CMS
    - Extensively tested
  - ATLAS
    - Recent efforts, using the FullSimLight (FSL) simulation package

### Example visualizations







11



### ATLAS as a new reference model

- ATLAS experiment as next reference model for QSS methods
- Explore simulation scenarios that use QSS methods integrated into the recently developed **FullSimLight** simulation prototype [1][2], a lightweight standalone Geant4 simulation tool that supports the full ATLAS geometry and the ATLAS magnetic field map
- Of particular interest is the simulation of the **EMEC** detector
- The EMEC (ElectroMagnetic End-Cap) [3] is a lead-liquid argon sampling calorimeter with interleaved accordion-shaped absorbers and electrodes.
  - The accordion fold amplitude varies with the radius from the wheel center leading to a varying gap size
  - It has been implemented as a custom solid (GeoSpecialShape) in GeoModel and in Geant4



Picture of an electromagnetic end-cap module during stacking, showing the accordion structure of the ATLAS EM calorimeters.

### ATLAS as a new reference model

- The EM calorimeters comprise accordion-shaped copper-kapton electrodes positioned between lead absorber plates and kept in position by honeycomb spacers while the system is immersed in LAr [1]
- The **EMEC** special shape is a well-known hotspot in the ATLAS simulation:
  - takes a significant amount of the total full Geant4 simulation CPU time: ~11.5%
- The research hypothesis is that the **EMEC's densely layered geometry** is a very **suitable** application case where the efficient discontinuity handling property of QSS can be effectively leveraged.



| Madula / Class / Severa Supplier / Cell Shade                                                                               | CDU Time = | E Instructions Delived | Microarchitecture Us    | age 📧    |
|-----------------------------------------------------------------------------------------------------------------------------|------------|------------------------|-------------------------|----------|
| Module / Class / Source Function / Call Stack                                                                               | CPO Time ¥ | instructions Retired   | Microarchitecture Usage | CPI Rate |
| libG4geometry.so                                                                                                            | 27.0%      | 26.9%                  | 40.2%                   | 0.665    |
| libG4processes.so                                                                                                           | 24.2%      | 21.4%                  | 32.2%                   | 0.693    |
| v libGeoSpecialShapes.so                                                                                                    | 11.5%      | 14.2%                  | 53.9%                   | 0.571    |
| LArWheelCalculator_Impl::DistanceCalculatorSaggingOff                                                                       | 6.7%       | 8.9%                   | 50.1%                   | 0.563    |
| LArWheelCalculator                                                                                                          | 2.4%       | 3.3%                   | 66.7%                   | 0.570    |
| LArWheelCalculator_Impl::WheelFanCalculator <larwheelcalculator_impl::saggingoff_t></larwheelcalculator_impl::saggingoff_t> | 2.1% 💼     | 1.8% 🔲                 | 45.5%                   | 0.610    |

Contributed by Marilena Bandieramonte, U. of Pittsburgh

### QSS Stepper in ATLAS - FullSimLight (G. Romczyk)

- First thorough validation of QSS2 in FSL
- Accuracy parameter sweeping:
  - dQRel=1e-4, dQMin=1e-7
  - o dQRel=1e-5, dQMin=1e-8
  - o dQRel=1e-6, dQMin=1e-9
- Preliminary conclusions:
  - QSS2 can achieve performance similar to the RK45 stepper in FSL (with acceptable accuracy)
  - More investigation is needed to see if extra performance gains can be achieved by focusing QSS2 in the EMEC hotspot region
- Experiment configuration in FSL:
  - ATLAS Extension: https://geomodel.web.cern.ch/home/fullsimlight/atlas-extensions/
  - Geo File: https://geomodel.web.cern.ch/atlas-geometry-data/geometry-ATLAS-R3S-2021-03-02-00.db
  - Magnetic Field: https://geomodel.web.cern.ch/atlas-magnetic-field/bmagatlas\_09\_fullAsym20400.data



14

### New variants of QSS - testing phase

## (M. Portnoy)

#### • newQSS

- Reimplementation of the current QSS version available in Geant4 release
- More performant in some examples
- Easier to understand and to extend

### • HelixMixedQSS (experimental)

- Combines with helix advances by *measuring the field variability*
- *Good for slowly varying B fields*. Accuracy degrades with rapidly changing B fields.
- Work in progress: Still need to fine tune some parameters of our heuristics

#### • RotationQSS (experimental)

- A new *coordinate system rotation-invariant* version of QSS (orders 2 and 3)
- Achieves better accuracy for a same set of QSS error control parameters (dQRel, dQMin)
- Reduces some operations, but imposes an overhead that cancels out the performance boost.

### Work in progress

• They all need further explorations to assess in what situations they yield a better performance

### New Implementations: newQSS - Example: field01

- 1.6

1.4

- 1.2

- 1.0

0.8

0.6

0.4

- 0.2

#### QSS **stepping time new**QSS2**/old**QSS2 **ratio** Example: field01

| 1e – 1          | 0.68 | 0.72   | 0.71         | 0.73          | 0.68   | 0.62   |  |
|-----------------|------|--------|--------------|---------------|--------|--------|--|
| 1e — 2          | 0.77 | 0.76   | 0.80         | 0.74          | 0.69   | 0.64   |  |
| dQMin<br>1e – 3 | 0.79 | 0.83   | 0.82         | 0.74          | 0.69   | 0.62   |  |
| 1e – 4          | 0.82 | 0.87   | 0.81         | 0.72          | 0.70   | 0.59   |  |
| 1e – 5          | 0.82 | 0.86   | 0.79         | 0.78          | 0.67   | 0.60   |  |
|                 | 0    | 1e – 5 | 1e – 4<br>dQ | 1e – 3<br>Rel | 1e – 2 | 1e – 1 |  |

- Optimized re-implementation of the QSS family of Steppers in Geant4
- We can observe cases where the new versions present better performance
- The figure shows reduction of the simulation **QSS** <u>stepping</u> time (not end-to-end time)
- Improvements are highly dependent on the type of example tested and its configuration



### Getting comparable to DOPRI in "unfavorable cases"

- The new methods show *comparable performance to DOPRI in some cases* 
  - As expected, not particularly efficient for simulations with low number of intersections/step
- We reduced the QSS processing time on test examples
  - The figures shows end-to-end wall clock time for exampleB2a and field01 for 1000 beams



### Accuracy analysis - Comparison against DOPRI

- field01 example
- We show the difference (error) on each of the 3 spatial coordinates, and the respective trajectories
  - *relative* error order of magnitude: <1e-6</li>
- Trajectories are indistinguishable to the naked eye



### Conclusions

- Performance gains in Geant4 achievable by QSS methods are a fact
  - Largely application-dependent
- We are progressing into a phase of more comprehensive benchmark-based performance characterizations
  - ATLAS recently added to the list, bringing in new particular challenges
    - Multi-Stepper approach?
  - CMS continues to serve as a reference model (add more test cases)
  - The impacts of the new QSS flavors (new-, Rotate-, HelixMixed-) on CMS and ATLAS need to be studied soon
- We entered into a more stable and productive stage
  - Solid automated benchmarking tools + new QSS methods to propose and test

### Thank you

### **Backup Slides**

### QSS solvers for HEP applications

- Started as a collaboration with the Detector Simulation Group in Fermilab
  - w/Daniel Elvira & Team, Software for Physics Applications Dept., Scientific Computing Div.
- Since 2015 Research on efficient simulation of particle systems (HEP and other apps.)
- 1 completed PhD Thesis (Santi)
- 3 completed Master's Thesis (Ponieman ,Rossi, Mignanelli\*)
- 2 ongoing Master's Thesis (Grynberg Portnoy, Romczyk)
- 5 peer-reviewed publications
- Successful case of a HEP/Computer Science interdisciplinary collaboration
  - Results relevant and innovative both for the Physics and the Computer communities

Efficient discrete-event based particle tracking simulation for high energy physics

L. Santi, L. Rossi, and R. Castro

https://doi.org/10.1016/j.cpc.2020.107619



### Accuracy analysis - Comparison against DOPRI

| experiment           | stepper        | dQRel | dQMin | Real time | Substeps per<br>Step | % intersection<br>Per step | Speedup<br>relative dopri |  |
|----------------------|----------------|-------|-------|-----------|----------------------|----------------------------|---------------------------|--|
|                      | newQSS2        | 0.001 | 1E-05 | 34.87     | 17.31                | 5.98                       | -8.40                     |  |
|                      | newQSS3        | 0.001 | 1E-05 | 34.47     | 7.85                 | 5.81                       | -7.15                     |  |
| exampleB2a           | OldRK45        | N/A   | N/A   | 33.37     | 0.00                 | N/A                        | -3.62                     |  |
| Multi-beam           | RotationQSS2   | 0.001 | 1E-05 | 36.58     | 14.69                | 5.90                       | -13.71                    |  |
| (1000)               | QSS2           | 0.001 | 1E-05 | 36.00     | 18.29                | 6.39                       | -11.91                    |  |
|                      | QSS3           | 0.001 | 1E-05 | 35.53     | 7.90                 | 6.17                       | -10.45                    |  |
|                      | TemplatedDoPri | N/A   | N/A   | 32.16     | 0.00                 | N/A                        | 0.0                       |  |
|                      | newQSS2        | 0.001 | 1E-05 | 66.74     | 8.10                 | 0.11                       | -12.50                    |  |
|                      | newQSS3        | 0.001 | 1E-05 | 66.94     | 4.78                 | 0.11                       | -12.85                    |  |
| field01              | OldRK45        | N/A   | N/A   | 60.64     | 0.00                 | N/A                        | -2.22                     |  |
| Multi-beam<br>(1000) | RotationQSS2   | 0.001 | 1E-05 | 69.33     | 7.14                 | 0.11                       | -16.87                    |  |
|                      | QSS2           | 0.001 | 1E-05 | 69.43     | 8.12                 | 0.11                       | -17.04                    |  |
|                      | QSS3           | 0.001 | 1E-05 | 68.67     | 4.77                 | 0.11                       | -15.77                    |  |
|                      | TemplatedDoPri | N/A   | N/A   | 59.32     | 0.00                 | N/A                        | 0.0                       |  |

### Accuracy analysis - Comparison against DOPRI

| experiment                      | stepper        | dQRel | dQMin | Real time | Substeps per<br>Step | % intersection<br>Per step | Speedup<br>relative dopri |  |
|---------------------------------|----------------|-------|-------|-----------|----------------------|----------------------------|---------------------------|--|
|                                 | newQSS2        | 0.01  | 1E-03 | 32.59     | 5.08                 | 5.88                       | -1.20                     |  |
|                                 | newQSS3        | 0.01  | 1E-03 | 32.88     | 3.47                 | 5.27                       | -2.08                     |  |
| exampleB2a                      | OldRK45        | N/A   | N/A   | 33.38     | 0.00                 | N/A                        | -3.64                     |  |
| Multi-beam                      | RotationQSS2   | 0.01  | 1E-03 | 34.94     | 4.54                 | 6.01                       | -8.48                     |  |
| (1000)                          | QSS2           | 0.01  | 1E-03 | 34.10     | 6.74                 | 5.62                       | -5.86                     |  |
|                                 | QSS3           | 0.01  | 1E-03 | 34.89     | 4.43                 | 5.86                       | -8.31                     |  |
|                                 | TemplatedDoPri | N/A   | N/A   | 32.21     | 0.00                 | N/A                        | 0.0                       |  |
|                                 | newQSS2        | 0.01  | 1E-03 | 63.40     | 3.51                 | 0.10                       | -6.49                     |  |
|                                 | newQSS3        | 0.01  | 1E-03 | 63.47     | 2.83                 | 0.10                       | -6.60                     |  |
| field01<br>Multi-beam<br>(1000) | OldRK45        | N/A   | N/A   | 60.31     | 0.00                 | N/A                        | -1.30                     |  |
|                                 | RotationQSS2   | 0.01  | 1E-03 | 66.14     | 3.29                 | 0.11                       | -11.08                    |  |
|                                 | QSS2           | 0.001 | 1E-03 | 64.52     | 3.50                 | 0.11                       | -8.36                     |  |
|                                 | QSS3           | 0.001 | 1E-03 | 67.60     | 2.85                 | 0.10                       | -13.54                    |  |
|                                 | TemplatedDoPri | N/A   | N/A   | 59.54     | 0.00                 | N/A                        | 0.0                       |  |

### Integration with G4: High Level architectures



### QSS-based step computation sequence in Geant4

- The intersection-finding algorithm starts with a quick test using a linear segment joining the step endpoints (IntersectChord) yielding an initial estimation of the intersection point
- In case a volume boundary is crossed, this estimation is progressively improved (EstimateIntersectionPoint, that queries the Integration Driver on each of its iterations (AccurateAdvance) in order to advance a given length and then test which side of the boundary the particle lies in
- The QSS Driver, by means of the Interpolation Driver's custom behavior, issues an Interpolate call to the QSS Stepper
  - Interpolate **is handled very efficiently** leveraging the **polynomial QSS Substeps** previously computed and saved

crossing

Boundary



### Summary of results: QSS vs. DOPRI

|     | Example \Xi       | Meth<br>od | QSS accurad<br>dQrel <del> </del> | y parameters<br>dQmin <del> </del> | % of<br>Intersecti<br>ons per<br>G4 Step | QSS<br>Substeps<br>per G4<br>Step | User<br>Time | System<br>Time <del> </del> | Real<br>Time <del>·</del><br>(seg) | Average<br>Time per<br>G4 Step<br>(seg) | Speedup<br>(QSS vs.<br>DOPRI)<br>Real Time |
|-----|-------------------|------------|-----------------------------------|------------------------------------|------------------------------------------|-----------------------------------|--------------|-----------------------------|------------------------------------|-----------------------------------------|--------------------------------------------|
|     | B2a               | DOPRI      | N/A                               | N/A                                | 3.79%                                    | N/A                               | 2.052        | 0.175                       | 2.614                              | 1.3E-04                                 | N/A                                        |
|     | B2a               | QSS        | 1.0E-02                           | 1.0E-03                            | 3.75%                                    | 10.191                            | 2.067        | 0.176                       | 2.654                              | 1.3E-04                                 | -1.53%                                     |
|     | B2b               | DOPRI      | N/A                               | N/A                                | 3.73%                                    | N/A                               | 2.081        | 0.178                       | 2.651                              | 1.3E-04                                 | N/A                                        |
|     | B2b               | QSS        | 1.0E-02                           | 1.0E-03                            | 3.77%                                    | 10.209                            | 2.107        | 0.178                       | 2.680                              | 1.3E-04                                 | -1.09%                                     |
| ſ   | B4c               | DOPRI      | N/A                               | N/A                                | 4.31%                                    | N/A                               | 1.623        | 0.180                       | 2.202                              | 1.1E-03                                 | N/A                                        |
|     | B4c               | QSS        | 1.0E-02                           | 1.0E-03                            | 4.02%                                    | 2.517                             | 1.603        | 0.182                       | 2.170                              | 2.1E-03                                 | 1.43%                                      |
|     | B4d               | DOPRI      | N/A                               | N/A                                | 4.31%                                    | N/A                               | 1.637        | 0.183                       | 2.217                              | 1.1E-03                                 | N/A                                        |
|     | B4d               | QSS        | 1.0E-03                           | 1.0E-04                            | 4.19%                                    | 5.026                             | 1.605        | 0.178                       | 2.164                              | 1.1E-03                                 | 2.39%                                      |
| (*) | B5 SingleBeam     | DOPRI      | N/A                               | N/A                                | 2.78%                                    | N/A                               | 3.442        | 0.257                       | 4.004                              | 1.1E-01                                 | N/A                                        |
| ()  | B5 SingleBeam     | QSS        | 1.0E-03                           | 1.0E-04                            | 2.78%                                    | 1,494.940                         | 3.259        | 0.245                       | 3.841                              | 1.1E-01                                 | 4.06%                                      |
|     | Extended Field 01 | DOPRI      | N/A                               | N/A                                | 6.51%                                    | N/A                               | 1.020        | 0.096                       | 1.347                              | 7.4E-04                                 | N/A                                        |
|     | Extended Field 01 | QSS        | 1.0E-02                           | 1.0E-03                            | 5.99%                                    | 37.787                            | 1.014        | 0.096                       | 1.333                              | 6.7E-04                                 | 1.03%                                      |
|     | Extended Field 02 | DOPRI      | N/A                               | N/A                                | 19.17%                                   | N/A                               | 1.270        | 0.124                       | 1.612                              | 9.7E-04                                 | N/A                                        |
|     | Extended Field 02 | QSS        | 1.0E-02                           | 1.0E-03                            | 19.17%                                   | 3.056                             | 1.265        | 0.128                       | 1.610                              | 9.7E-04                                 | 0.07%                                      |
|     | Extended Field 03 | DOPRI      | N/A                               | N/A                                | 14.76%                                   | N/A                               | 1.375        | 0.186                       | 1.783                              | 1.9E-04                                 | N/A                                        |
|     | Extended Field 03 | QSS        | 1.0E-02                           | 1.0E-03                            | 9.99%                                    | 62.279                            | 2.608        | 0.451                       | 3.281                              | 8.2E-05                                 | -83.95%                                    |
|     | Extended Field 06 | DOPRI      | N/A                               | N/A                                | 0.08%                                    | N/A                               | 0.030        | 0.010                       | 0.037                              | 3.1E-05                                 | N/A                                        |
|     | Extended Field 06 | QSS        | 1.0E-02                           | 1.0E-03                            | 0.08%                                    | 1.190                             | 0.032        | 0.012                       | 0.040                              | 3.3E-05                                 | -7.27%                                     |

(\*) In all cases where **QSS** is able to outperform **DOPRI**, only the best combination of QSS accuracy parameters is shown (relative and **min**imum **Q**uantum **d**elta sizes, **dQrel** and **dQmin**). Other combinations may exist that could even perform worse than DOPRI.

### Results highlights

- 11 examples tested and verified successfully:
  - **Basic** (B2a, B2b, B4c, B4d, B5), **Extended** (with magnetic field: 01, 02, 03, 06), **Advanced** (ams\_ECAL)
  - **FullSimLight**, a lightweight standalone Geant4 simulation tool that supports the full ATLAS geometry and the ATLAS magnetic field map
- Benchmarks made against G4 (ver. 11.0.0-ref-02) with default stepper (DOPRI with Interpolation Driver)
- In 5 cases there exist QSS accuracy parameters that can outperform DOPRI
  - However, the ratio of geometry intersections per G4 step remains below 19% in all tested examples (typically around 5%) => these are **not** "QSS-friendly" scenarios (not "too many" intersections per step)
- Particle trajectories were compared visually using Paraview and VTK output files
- Benchmarking software: we continue developing a toolset for repeatable benchmarking that can be parameterized to produce systematic performance comparisons across G4 Steppers

**Benchmark computing platform** 

- All experimentations carried out in CERN's OpenLab (controlled environment)
- Hardware specs: Intel(R) Xeon(R) CPU E5-2683 v4 @ 2.10GHz (64 CPUs) 64 GB RAM

### 2023 Plans for QSS integration into the G4 release

- March/April
  - Goal: Integrate the already developed QSS capabilities (last integration: v10.5)
  - Incorporate members of the UBA Team (Simulation Lab, CS Dept.) to the Geometry and Transport WG
  - Initial tests, code housekeeping, documentation for final users.
- June/July/August
  - Goal: Include QSStepper into the Geant4 Quality Assurance regular procedures (collab. with Soon Yung Jun, Fermilab)
  - Reproduce benchmarks already run by the UBA Team in Argentina
  - Start adding more applications (based on the success of previous benchmarks)
- September/October
  - Goal: QSStepper in the next *development version*
  - Assess performance, identify bottlenecks and opportunities for improvements
  - Design/start new projects for extensions/refinements/enhancements
    - Typically advanced undergrad students, Master's Thesis, 6mo-1yr. Potentially a new PhD student
- November/December
  - Goal: QSStepper in the next *release version*
  - Design/start maintenance procedures/plan
  - More goals TBD according to the progresses made so far

### Summary 2023

- Performance gains in Geant4 achievable by QSS methods are a fact
  - But also largely application-dependent
- We are entering a new phase of more comprehensive benchmark-based performance characterizations
  - CMS continues to serve as a reference model (add more test cases)
  - ATLAS to be soon added to the list, bringing in new particular challenges
- HEP as a provider of challenging applications for continued Simulation-specific R&D