

Istituto Nazionale di Fisica Nucleare

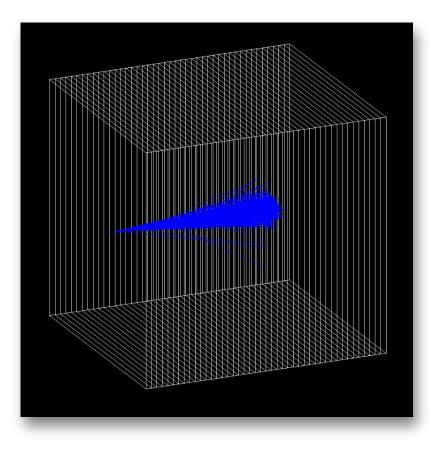
The Radiobiology Example:

A Flexible Framework for Machine Learning, Phase Space testing and beyond in Monte Carlo Applications

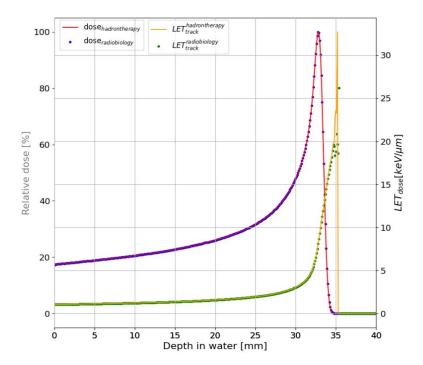
Alberto Sciuto*

G.A.P. Cirrone, F. Farokhi, S. Fattori, A. Hassan, L. Pandola, G. Petringa

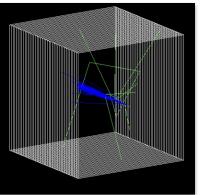
*Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud (Italy)


The Radiobiology Application

- Medical Extended Example
- Released with Geant4 version 11.2 on December 8th, 2023.
- It hereditates from the advanced example "hadrontherapy" classes to compute:
 - Dose;
 - LET;
 - Survival Fraction Curves;
 - RBE.
- The geometry is intentionally extremely simple to implement the concept of "sand-box"

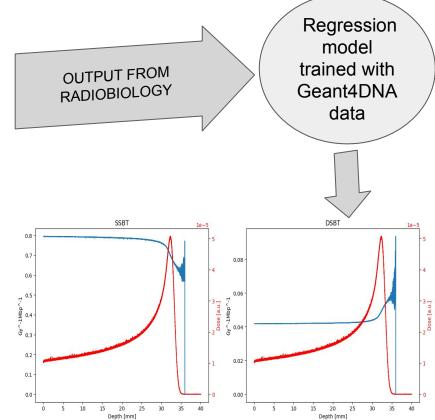

Radiobiology: Features

- LET (Linear Energy Transfer) Calculation
 - Dose-weighted (LETdose) and track-weighted (LETtrack) distributions provided
 - Algorithms validated through benchmark tests and publications
 - Calculates LET for both primary particles and secondary fragments
- Survival Curves and RBE (Relative Biological Effectiveness)
 - Built-in C++ classes to compute survival curves based on dose distributions
 - Integrated algorithms for RBE calculations, validated through multiple studies
- Future developments
 - ML algorithms will convert Geant4 micrometric scale outputs to Geant4-DNA nanometric scale without additional CPU load
 - Support for phase-space input from specific beamline facilities


Radiobiology: Benchmarking and Validation

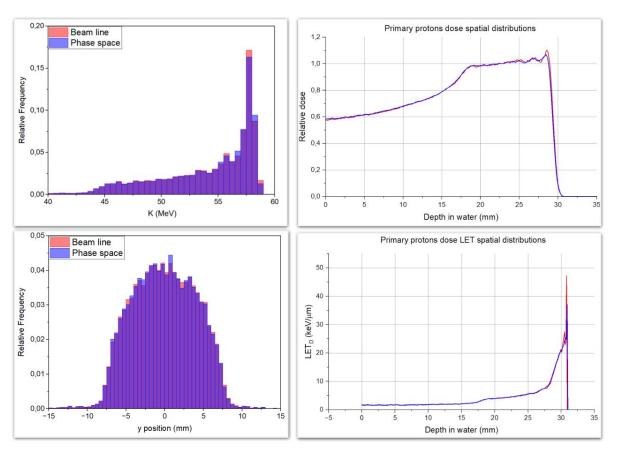
- The "radiobiology" application underwent rigorous testing and benchmarking against the "hadrontherapy" application, using identical beam configurations for comparison.
- Results of one such comparison, focusing on dose and LETtrack distributions with a 62 MeV beam, are presented
- The comparison reveals full agreement between the outputs of both applications, with slight differences in LETtrack distributions attributed to low statistics in the distal part.

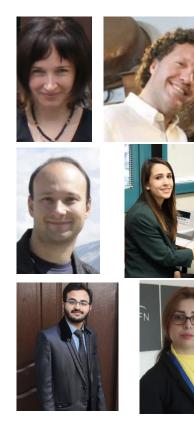
Radiobiology: Current and future development


Simple workflow on how to use NN regression as a postprocessing step

GANDALF: Generative ANsatz for DNA damage evALuation and Forecast. A Neural Network-Based Regression for Estimating Early DNA Damage Across Micro-Nano Scales

Alberto Sciuto¹, Serena Fattori^{1,*}, Farmesk Abubaker^{1,2}, Sahar Arjmand¹, Roberto Catalano¹, Konstantinos Chatzipapas³, Giacomo Cuttone¹, Fateme Farokhi¹, Mariacristina Guarrera¹, Ali Hassan¹, Sebastien Incerti⁴, Alma Kurmanova^{1,5}, Demetrio Oliva¹, Alfio D. Pappalardo¹, Giada Petringa¹, Dousatsu Sakata^{6,7,8}, Hoang N. Tran⁴, and G. A. Pablo Cirrone^{1,9}


CURRENTLY UNDER REVIEW



Radiobiology: Current and future development

Phase-Space File Compatibility for Complex Beamline Geometries

- Inherited from the Hadrontherapy example, the application will be able to read phase-space files generated by real-world particle beam facilities.
- Enables simulation of highly complex beamline configurations, allowing detailed modeling of actual clinical or experimental setups.

Thank

you

THE #1 PROGRAMMER EXCUSE FOR LEGITIMATELY SLACKING OFF: "MY CODE'S COMPILING."

