

UHDR example: overview, updates & perspectives Serena Fattori (INFN-LNS) on behalf of Geant4-DNA collaboration

Geant4-DNA Extended example: UHDR

- The UHDR example and the Mesoscopic approach
- The new IRT-sync
- The pH validation
- More improvments later on

UHDR: General Overview

- Use new « mesoscopic » approach
 Simulation from heterogeneous to
- homogeneous states until about 15 minutes
- pH-dependence of hydroperoxyl radical / superoxide anion radical (HO₂^{•/} O₂^{•/}) kinetics in water
- Dissolved Oxygen in Water
- Acid-base reactions associated with pKa at 25 °C.
- Implemented periodic boundary condition « PBC » for physical stage

AECL-11073, COG-94-167

Rate Constants and G-Values for the Simulation of the Radiolysis of Light Water over the Range 0-300°C

Constantes de vitesse et rendements g pour la simulation de la radiolyse de l'eau ordinaire entre les températures 0 et 300°C

A.J. Elliot

#	Acid-Base reactions	Rate coefficients and corresponding references	
1	$HO_2 \rightarrow H_3O^+ + O_2^-$	k_1 * K4	7.58e5 s ⁻¹
-1	$H_3O^+ + O_2^- \rightarrow HO_2$	[Elliot, 1994]	4.78e10 M ⁻¹ s ⁻¹
2	$H \rightarrow e^{-}_{aq} + H_{3}O^{+}$	k ₋₂ * K ₅	6.32 s ⁻¹
-2	$e^{-}_{aq} + H_3O^+ \rightarrow H^{\bullet}$	[Elliot, 1994]	2.25e10 M ⁻¹ s ⁻¹
3	e^{aq} + $H_2O \rightarrow H^{\bullet} + OH^-$	k ₋₃ * K ₁ / (K ₅ * [H ₂ O)])	1.57e1 M ⁻¹ s ⁻¹
-3	$H^{\bullet} + OH^{-} \rightarrow H_2O + e^{-}_{aq}$	[Elliot, 1994]	2.49e7 M ⁻¹ s ⁻¹
4	$O_2^- + H_2O \rightarrow HO_2 + OH^-$	k_4 * K1 / (K4 * [H2O)])	0.15 M ⁻¹ s ⁻¹
-4	$\mathrm{HO}_{2} + \mathrm{OH}^{-} \rightarrow \mathrm{O}_{2}^{-} + \mathrm{H}_{2}\mathrm{O}$	[Elliot, 1994]	1.27e10 M ⁻¹ s ⁻¹
5	$\mathrm{HO}_2^- + \mathrm{H}_2\mathrm{O} \rightarrow \mathrm{H}_2\mathrm{O}_2 + \mathrm{OH}^-$	k_5 * K1 / (K2 * [H2O)])	1.36e6 M ⁻¹ s ⁻¹
-5	$\rm H_2O_2\text{+}OH^- \rightarrow \rm HO_2^- + \rm H_2O$	[Elliot, 1994]	1.27e10 M ⁻¹ s ⁻¹
6	O^- + $H_2O \rightarrow OH$ + OH^-	k ₋₆ * K ₁ / (K ₃ * [H ₂ O)])	1.8e6 M ⁻¹ s ⁻¹
-6	$OH + OH^- \rightarrow O^- + H_2O$	[Elliot, 1994]	1.27e10 M ⁻¹ s ⁻¹
7	$H_2O_2 \rightarrow H_3O^+ + HO_2^-$	k_7 * K2	7.86e-2 s ⁻¹
-7	HO_2^- + $\mathrm{H}_3\mathrm{O}^+ \to \mathrm{H}2\mathrm{O}2$	[Elliot, 1994]	4.78e10 M ⁻¹ s ⁻¹
8	$^{\circ}\text{OH} \rightarrow \text{O}^{-} + \text{H}_{3}\text{O}^{+}$	k ₋₈ * K ₃	0.0602 s ⁻¹
-8	$O^- + H_3O^+ \to OH$	[Elliot, 1994]	9.56e10 M ⁻¹ s ⁻¹

GEANT4-DNA

Serena Fattori (INFN-LNS) on behalf of Geant4-DNA collaboration

29th Geant4 Collaboration Meeting: Catania 7–11 Oct 2024

UHDR: new developments (IRT-RDME)

« Time structure » pulse

- Electron irradiated until the total energy deposition reaches 0.1-5 Gy
- Pulse duration (duration of the train) alterable until 1 second (t1)
- « Time structure » pulse have been sampled from a real raw signal

UHDR: new developments (IRT-RDME)

UHDR and CONV irradiations

Ongoing: pH validation

300 MeV proton

pH dependence during heterogeneous periode pH-dependence of $HO_2^{\bullet/}$ $O_2^{\bullet-}$ kinetics in water

Currently:

- Very good agreement for most radiolitic species
- Divergency for e_aq and H
- Investigation are ongoing
- These species are very sensitive to the oxygen content

GEANT4-DNA

Future applications

- The output of the Laser driven appliaction (see "Hadrontherapy example:Current Status and Future Perspectives" G.Petringa)
- Will be the Phase Space in Input to the UHDR application

Thank you for your attention!