

TB2024 - A first look

lacopo Vivarelli - Internal HiDRa meeting - 11/9/2024 - all results are EARLY DAYS - do not use for public talks

Reconstruction chain

PMT calibration procedure

- PMT calibration procedure:
 - First equalise: \bullet
 - runs with e 20 GeV (727-764 as per twiki). In each run we shoot in a different tower centre. We take the raw (no pedestal subtraction) peak. They are q_i (with *i* going over S, C and tower number)
 - We take pedestals from dedicated runs (pedestal stability to be checked, anecdotally should be good). They are p_i .
 - In a given run, for a given event *e* where we measure a given ADC signal $A_{e,i}$ in channel *i*, the equalised signal is $E_{eq,e} = \frac{A_{e,i} p_i}{q_i p_i}$.
 - The set the EM scale of the calorimeter scale (using run 746 e 20 GeV in T00):
 - Separately for S and C, compute the energy in the central part of the calorimeter ($E_{R0} + E_{R1} + E_{R2}$, should have negligible electron contamination)
 - Define a calibration factor as $adcToGeV = 20 GeV/(E_{R0} + E_{R1} + E_{R2})$.
 - Finally, take into account shifts in HV:
 - Build a list of runs taken with lower voltages in T00.
 - Compute, separately for S and C, an additional factor as $E_{T00 in run 746}/E_{T00 in run 766}$

The three steps in the code

The adcToGeV factors

วชว																
506	\sim	void Even	nt::cal	libratePMT(PMTCalibra	tion&	рп	ntcalibr	ration,	Ever	ntOut∗	evou	ıt, Long64_t	ent	ry)	[
507																
508		static	float	adcToPhysS	= 20./1.2	617;	//	Second	attempt	to	bring	the	calorimeter	to	the	electromag
509																
510		static	float	adcToPhysC	= 20./1.3	396;	//	Second	attempt	to	bring	the	calorimeter	to	the	electromag
511																

Taking into account the different HVs

```
512
513
          /* These numbers are used to take into account the change in HV in tower 0 in some runs*/
514
          static float correctT00_S = -1.;
515
          static float correctT00_C = -1.;
516
517
          if (correctT00_S < 0){ // check that we haven't yet tested whether this run should be corrected or not
            correctT00_S = 1.;
518
            correctT00_C = 1.;
519
520
            std::vector<unsigned int> runs_tobecorrected = {766,767,772,774,775,776,777,778,779,780,781,782,783,784,786,792,793,794,796,797};
521
            for (unsigned int run_tc : runs_tobecorrected){
             if (run_number == run_tc){
522
523
                correctT00_S = 15.37/5.75; // Ratio of the peak position in run 746 and in run 766 (766 before applying this calibration
524
                correctT00_C = 14.9/2.88; // Ratio of the peak position in run 746 and in run 766 (766 before applying this calibration
525
                std::cout << "This run was taken with the new HV. The response in T00 will be rescaled" << std::endl;</pre>
526
                std::cout << "TS00 response will be multiplied by " << correctT00_S << std::endl;</pre>
527
                std::cout << "TC00 response will be multiplied by " << correctT00_C << std::endl;</pre>
528
529
530
531
_ _ _
```


gnetic scale. Number obtained using second equalisation cycle (20 GeV electrons) gnetic scale. Number obtained using second equalisation cycle (20 GeV electrons)

Finally, the calibration

```
if (entry < 0){ // Then use the pedestals and peaks from file</pre>
533
534
            for (auto it = this->channel.begin(); it != this->channel.end(); ++it){
              std::string key = it->first;
535
536
              // check if the key is available in the PMTcalibration map. If it isn't, this is an ancillary. Skip for the moment
537
538
539
              if (pmtcalibration.PMTped.find(key) != pmtcalibration.PMTped.end())
540
                {
541
                  static float adcToPhys;
542
                  if (key.find("TS") != std::string::npos){
                    adcToPhys = adcToPhysS;
543
                  } else if (key.find("TC") != std::string::npos){
544
                    adcToPhys = adcToPhysC;
545
546
                  3
                  if (key == "TS00"){
547
                    this->channel_calibrated[key] = adcToPhys*correctT00_S*((float(this->channel[key])) - pmtcalibration.PMTped[key])/(pmtcalibration.PMTpk[key] - pmtcalibration.PMTped[key]);
548
                  } else if (key == "TC00"){
549
550
                 } else {
551
552
553
554
555
556
```


this->channel_calibrated[key] = adcToPhys*correctT00_C*((float(this->channel[key])) - pmtcalibration.PMTped[key])/(pmtcalibration.PMTpk[key] - pmtcalibration.PMTped[key]);

this->channel_calibrated[key] = adcToPhys*((float(this->channel[key])) - pmtcalibration.PMTped[key])/(pmtcalibration.PMTpk[key] - pmtcalibration.PMTped[key]);

What can go wrong?

- The peak position at the different stages can depend quite a bit on the electron selection.
- DWC are a bit more critical, need to study their impact a bit better.

Pedestal stability

is TC00.

Took Run 782 (in black, new HV), Run 713 (in red, old HV), Run 770 (in green, old HV). Plotted pedestal value Vs EventID. Full marker is TS00, empty marker

Fibre attenuation length

- Used runs 804-816 to c compute the fibre attenuation length
 - Work done before last calibration, ignore absolute scales.
 - The energy is R0 + R1 + R2.
 - Bad result
 - But why essentially the same result for C and S?????

ALMA MATE

