

UNIVERSITÉ **DE GENÈVE**

Machine Learning Techniques to Probe Heavy Neutral leptons in the electron channel at FCC-ee (Brief Summary)

Pantelis Kontaxakis on behalf of the HNLs (evjj) team

September 26, 2023

Introduction

• Low-scale inverse seesaw mechanism enables the search for heavy right-handed neutrinos with Yukawa couplings O(10⁻⁶) in the mass range of 10 to 100 GeV

● Our analysis focuses on the electron final state with two jets, investigating the (pseudo-) Dirac HNL model between 10-80 GeV with mixing angles between 10⁻⁴ < $|U_{eN}|^2$ < 10⁻¹⁰

Pantelis Kontaxakis

Background Processes

Three dominant SM background processes considered:

Pantelis Kontaxakis

• $Z \rightarrow bb$, cc or $Z \rightarrow 4$ body final state (instead of heavier quark final states like $Z \rightarrow \tau \tau$) The 4-body bkg and all signal samples are privately generated using MadGraph

$oldsymbol{\sigma}(ext{pb})$	Monte-Carlo events	Production \mathcal{L} (fb ⁻¹)
$6.65 imes 10^3$	$4.39 imes 10^8$	$6.60 imes 10^1$
$5.22 imes 10^3$	$4.98 imes 10^8$	$1.15 imes 10^2$
$1.40 imes 10^{-2}$	1.00×10^5	$7.14 imes10^3$

Limited MC statistics for central backgrounds; the analysis is conducted at 10 fb⁻¹ and scaled to **150 ab⁻¹** for the final result

Out and Count Method

C&C studies made by D. Moulin (master thesis, 2023) and used as benchmark for optimization

Pantelis Kontaxakis

Analysis Methods

Significance: $Z = \sqrt{2\left(n \cdot \ln\left[\frac{n(b+\sigma^2)}{b^2+n\sigma^2}\right] - \frac{b^2}{\sigma^2}\ln\left[1 + \frac{\sigma^2(n-b)}{b(b+\sigma^2)}\right]\right)}$

Machine Learning Method(s)

 Studies made by T. Critchley (master thesis, 2024) trying to increase the sensitivity from the C&C method

+BDT Method:

XGBoost in conjunction with TMVA (binary classification)

DNN Method:

*****For both methods:

- Individual training for every mass trying to reach the full sensitivity
- The following variables were used for the training

Pantelis Kontaxakis

Analysis Methods

Keras in Tensorflow with hyperparameter optimization (binary classification)

s point		
-	Object	Variables
	Leading electron	$E, \phi, d_0, \sigma_{d_0}, \Delta R_{ejj}$
d	Neutrino	$E_{ m miss}, heta$
	Di-jet system	$\Delta R_{jj},\phi$
	Vertex and tracks	$n_{ m tracks}, n_{ m primary\ tracks},\ \chi^2_{ m vertex}$

Sensitivity Comparison

BDT model provides ~2 orders of magnitude more sensitivity compared to the C&C method and outpeforms DNN

The (current) DNN approach offers ~1 order of magnitude improvement

- Hard to optimize but...
- ...implementing more sophisticated DNN architectures and robust hyperparameter optimization could significantly improve the performance

Pantelis Kontaxakis

Summary

Scaled to 150 ab⁻¹ without accounting for uncertainties, the plot shows broader phase space coverage compared to the C&C

Nearing FCC-ee limits with ~50% of the branching ratio; serves as a guide for improvement

ML shows strong potential to improve limits

Increasing MC statistics in the signal region is essential for robust analysis

