Inert 2HDM scalar pair production @ FCC-ee Follow-up from talk at FCC-Phys Perf meeting in Dec 2023, https://indico.cern.ch/event/1357026/ contributions/5715328/attachments/2774401/ 4847540/magnan_idmAtFcc_231218.pdf

A.-M. Magnan, T. Curtis, Imperial College London N. Nasser, CERN summer student In collaboration with T. Robens, IRB Zagreb

26/09/2024, FCC BSM searches meeting

Outline of the analysis

Final state: two same-flavour opposite-sign electrons or muons, and very little MET.

- 2HDM+Z2 symmetry (JHEP 1812 (2018) 081): 5 scalars, h, H, A, H+, H-.
- Define parameter space for the signal MC production (MG5_aMC@NLO) reduced to 2 free parameters, m_H and m_A.
- Use DELPHES objects.
- Set of preselection cuts to reject main background (Winter2023 production), keeping signal for most of the parameter space under study.
- Multivariate analysis with set of input features: parametric Neural Network.
- Fit pNN output and extract 95% CL upper limit on signal XS using CMS Combine package.
- Use $\mathcal{L} = 10.8$ (3) ab⁻¹ of total integrated luminosity for $\sqrt{s} = 240$ (365) GeV.

Cross-check against CLIC Setup

T. Robens et al, JHEP 07 (2019) 053 (@ \sqrt{s} = 380 GeV) Snowmass report: arXiv:2002.11716 (@ \sqrt{s} = 250 GeV)

All OK for signal and background generations !

FCCAnalyses: FCC-ee Simulation (Delphes)

Limit results

- Maximum likelihood fit of pNN> 0.9 distributions. Only one bin-by-bin uncertainty in the fit: MC stat.
- For each mH value, plot 95%CL upper limit as a function of mass splitting $m_A - m_H$, for ee and $\mu\mu$ channels separated and combination.
- Interpolate and extract limit in 2-D plot of $\Delta m = m_A m_H$ vs m_H.
- To do: style to be improved and 365 GeV results to be added. ۰

CC-ee
$$\sqrt{s} = 240 \,\text{GeV}$$

FCC-ee
$$\sqrt{s} = 240 \,\text{GeV}$$