Looking for leptophilic Z' at the FCC-ee

- Baibhab Pattnaik (IFIC, University of Valencia/CSIC)

In collaboration with

Rebeca Gonzalez Suarez and Jose Zurita

FCC BSM Meeting

1

Leptophilic Z'

- Arises from an additional U(1) symmetry; anomaly free
- Electrically neutral, couples only to SM leptons
- Does not show up at hadron colliders at tree level
- We focus on $L_e L_\mu$ and $L_e L_\tau$ models (models where Z' couples only to electron and muon flavours, and electron and tau flavours respectively)
- Mass range of interest: 10-365 GeV

Recent works: Dasgupta et al (2308.12804), Goudelis et al (2312.14103)

Baibhab Pattnaik

FCC-ee sensitivity

- e+ e- --> Z' + γ
- Signal: 2 leptons + γ
- Main backgrounds: 2 leptons + γ

4 leptons + γ (final state)

- Calculate signal and background cross-sections on MG5
- Use PYTHIA8 and DELPHES to take showering and detector effects into account
- Cuts taken from DELPHES IDEA card used for parton level analysis:

•
$$l = e, \mu$$
: $p_T > 0.5$ GeV, $|\eta| \le 2.56$, $\Delta R(l, X) > 0.5$, $\epsilon_e = 0.99$

- $\gamma: E > 2$ GeV, $p_T > 0.5$, $|\eta| < 3.0$, $\Delta R(\gamma, X) > 0.5$, $\epsilon_{\gamma} = 0.99$
- $\tau: p_T > 1 \text{ GeV}, |\eta| \leq 3.0, \Delta R(\tau, X) > 0.5, \epsilon_e = 0.85$.

Pipeline (contd.):

- Calculate signal and background cross-sections on MG5
- Use PYTHIA8 and DELPHES to take showering and detector effects
 into account
- Final analysis is performed using Madanalysis, additional cuts imposed to improve sensitivity

Baibhab Pattnaik

Pipeline (contd.):

- Calculate signal and background cross-sections on MG5
- Use PYTHIA8 and DELPHES to take showering and detector effects into account
- Final analysis is performed using Madanalysis, additional cuts imposed to improve sensitivity
- Invariant mass (for charged dilepton pair signal) and energy window (for mono-gamma signal) used to calculate signal and background

events, and significance:
$$\mathscr{Z} = \frac{N_s}{\sqrt{N_s}}$$

$$\sqrt{N_s + N_b}$$

• Plots shown for $\mathscr{Z} = 2$

Sensitivity plots

Sensitivity plots with existing constraints (shaded) for the charged dilepton search channel. The plots are shown for an invariant mass window of 5 GeV

Baibhab Pattnaik

Sensitivity plots

Sensitivity plots with existing constraints (shaded) for the mono photon search channel. The plots are shown for an energy window of 5 GeV

Baibhab Pattnaik

Combined search channels

Baibhab Pattnaik

Combined search channels

Baibhab Pattnaik

Sensitivity dependence on invariant mass window resolution

Sensitivity dependence ($ee\gamma$ search channel)

Baibhab Pattnaik

Sensitivity dependence on energy window resolution

Baibhab Pattnaik

Thank you!

Backups:

Backgrounds

Process	N Z run	N WW nun	N 7H mm	N $t\bar{t}$ mup
$e^+e^- \to \gamma + \ldots$	¹ v _{ev} , 21 un	¹ ^{ev} , ^v ^v ¹ ull	¹ v _{ev} , 211 1ull	$_{\rm vev}, \iota \iota {\rm rull}$
$\mu\mu$	$2.3 imes 10^7$	$2.1 imes 10^4$	$5.5 imes 10^3$	844
ee	$8.63 imes10^7$	$1.26 imes 10^6$	$4.5 imes 10^5$	$7.9 imes 10^4$
au au	$2.3 imes10^7$	$2.1 imes 10^4$	$5.7 imes 10^3$	882
u u	$2.2 imes 10^6$	$5.9 imes 10^4$	$3.3 imes10^4$	1.35×10^4
$\mu\mu\mu\mu$	$1.2 imes 10^3$	14	6.3	1.4
$\mu\mu ee$	$8 imes 10^4$	$5.03 imes 10^3$	$4.16 imes 10^3$	$1.73 imes 10^3$
$\mu\mu u u$	8	18	15.6	6.7
eeee	$7.6 imes10^4$	$4.86 imes 10^3$	4.04×10^3	1783
ee au au	$3 imes 10^4$	$1.1 imes 10^3$	890	382
$ee \nu \nu$	12.8	20	25	11.6
au au au au	500	6.3	4.5	1
au au u	4	23	160	40
νννν	$5 imes 10^{-2}$	11.2	8.1	4.6

 Table 2: Expected number of events for our background processes

Baibhab Pattnaik