

Hidden sectors with two-particle angular correlations

E. Musumeci, A. Irles, R. Pérez-Ramos, I. Corredoira,

E. Sarkisyan-Grinbaum, Vasiliki A. Mitsou, M.A. Sanchis-Lozano

ANA

- "Two-particle angular correlations in the search for new physics at future e+e− colliders," Proc.
 LCWS2023, eConf C2305153 (2023), arXiv:2307.14734 [hep-ph] ← particle level
- "Exploring hidden sectors with two-particle angular correlations at future e⁺e⁻ colliders," arXiv:2312.06526 [hep-ph] ← detector level (ILC)
- Presentations in LCWS2023, 2nd ECFA w/s 2023, SUSY2024, LCWS2024, ICHEP2024, Corfu2024
- To be presented in 3rd ECFA w/s 2023 by Redamy Perez-Ramos

FCC BSM Searches Meeting 26 Sep 2024

ridge

Two-particle angular correlations

Powerful method to uncover collective effects resulting from high particle densities

 $N_{mix} = \iint \frac{d^2 N^{mix}}{d\Delta y d\Delta \phi} d\Delta y d\Delta \phi$

- Ridge structure observed in heavy-ion, pPb, *pp* collisions
- Also seen in $e^+e^- \rightarrow$ ALEPH archival data analysis
 - high-track multiplicity

 $N_{pairs} = \iint \frac{d^2 N^{same}}{d\Delta y d\Delta \phi} d\Delta y d\Delta \phi$

 $C_2(\Delta y, \Delta \phi) = \frac{S(\Delta y, \Delta \phi)}{B(\Delta y, \Delta \phi)}$ Density of particle pairs produced Density of particle pairs produced within the same event: in the **different** events: $S(\Delta y, \Delta \phi) = \frac{1}{N_{pairs}} \frac{d^2 N^{same}}{d\Delta y \Delta \phi}$ $B(\Delta y, \Delta \phi) = \frac{1}{N_{mix}} \frac{d^2 N^{mix}}{d\Delta y \Delta \phi}$

Test-bed: Hidden Valley (HV)

√s = 240 GeV

FCC-*ee* results

Event selection

- no secondary vertices
- neutral PFOs* ≤ 22
- charged PFOs \leq 15
- reconstructed ISR photons
 - $|\cos \vartheta_{\gamma ISR}| < 0.5$
 - $E_{\gamma ISR} < 40 \text{ GeV}$
- Di-jet invariant mass:
 m_{ii} < 130 GeV
- Leading-jet invariant mass:
 *E*_{jet} < 80 GeV

$$\mathcal{L}(\Delta \phi) = rac{\int_{y_{\inf} \leq |\Delta y| \leq y_{\sup}} S(\Delta y, \Delta \phi) dy}{\int_{y_{\inf} \leq |\Delta y| \leq y_{\sup}} B(\Delta y, \Delta \phi) dy},$$

*PFOs: Particle Flow Objects. Detector level particle candidates

Long-range, near-side ridge in SM due to ISR effect (resonant Z production)

Different behaviour between signal and background
 → hint of New Physics

y, ϕ coordinates defined

w.r.t. thrust axis

Two-particle angular correlations in collisions

- Interesting features depending on colliding particles and track multiplicities
- Heavy-ion collisions: ridge structure associated with fluctuating ion initial state

Sanchis-Lozano, <u>Int.J.Mod.Phys.A 24,</u> <u>4529 (2009)</u> Sanchis-Lozano & Sarkisyan-Grinbaum, <u>Phys.Lett.B 781, 505 (2018)</u> Pérez-Ramos, Sanchis-Lozano, Sarkisyan-Grinbaum, <u>Phys.Rev.D 105,</u> <u>053001 (2022)</u>

Phys.Lett.B 724 (2013) 213

Chen et al, <u>Phys. Lett. B 8</u>! (2024) 138957

Hidden Valley (HV)

"Meta-model": large class of theoretical scenarios

QCD-like HV scenario

- Communicator: *F_V*
- Charged under G_{SM} and G_V
- Pair-produced in collisions
- v-quarks, q_V , and v-gluons, g_V
- Prompt decays
 - $F_V \rightarrow f q_V \rightarrow$ hadrons
 - $E_V \rightarrow e q_V$
 - $Q_V \rightarrow q q_V$

Perturbation in conventional QCD cascade and final hadronisation anomalies in angular correlations e.g. *ridge*-like structures

Carloni & Sjöstrand, JHEP 09 (2010) 105

Correlation-related variables

- Angular correlations → event shape
- y, φ coordinates defined w.r.t. thrust axis

Higher energies (particle level)

- In the HV sector, $T_v T_v$ channel appears
- tt(bar) production appears in the SM background
- Contribution from SM decreases with the energy

Process	$\sigma_{\sqrt{s}=500{ m GeV}} \ [{ m pb}]$	$\sigma_{\sqrt{s}=1{ m TeV}}$ [pb]
	$m_{D_v} = 250 \text{ GeV}$	$m_{D_v} = 500 \text{ GeV}$
$e^+e^- \to D_v \bar{D}_v$	2.4×10^{-2}	4.4×10^{-3}
	$m_{T_v} = 250 \text{ GeV}$	$m_{T_v} = 500 { m ~GeV}$
$e^+e^- \rightarrow T_v \bar{T}_v$	$9.5 imes 10^{-2}$	$1.8 imes 10^{-2}$
$e^+e^- \to q\bar{q}$ with ISR	11	2.9
$e^+e^- \to t\bar{t}$	0.59	0.19
$WW \rightarrow 4q$	3.4	1.3

PYTHIA HV codes

name	partner	code	name	partner	code
D_v	d	4900001	E_v	e	4900011
U_v	u	4900002	ν_{Ev}	$ u_e $	4900012
S_v	s	4900003	MU_v	μ	4900013
C_v	c	4900004	ν_{MUv}	$ u_{\mu} $	4900014
B_v	b	4900005	TAU_v	τ	4900015
T_v	t	4900006	ν_{TAUv}	$ u_{ au}$	4900016
g_v		4900021			
γ_v		4900022			
q_v		4900101			