<u>Operation of the electron beam for external off-</u> axis injection, electron beam seeding and hosing in AWAKE Run 2b (2023-2025)

AWAKE Collaboration Meeting, November 6th-8th, CERN, CH

University Medical Center Groningen

Nikita Z. van Gils

In Run 2b the 19 MeV electron beam has been used for ...

Seeding of the self-modulation II. Seeding of the beam-hose (hosing) instability III. External injection of electrons into wakefields

University Medical Center Groningen

University Medical Center Groningen

Electron production: illumination of Cs₂Te photo cathode with a UV laser pulse

Input beam characterisation: transverse emittance and bunch charge measurement

Electron production: illumination of Cs₂Te photo cathode with a UV laser pulse

Input beam characterisation: transverse emittance and bunch charge measurement

Electron production: illumination of Cs₂Te photo cathode with a UV laser pulse

New screens enable beam measurements inside of the vapour source

For the first time, AWAKE is able to:

- 1) Align the electron beam to the proton beam trajectory (in vacuum) within the vapour source
- 2) Ensure overlap (crossing) of electron bunch trajectory with the plasma and proton bunch trajectory in vacuum
- 3) Maximise electron bunch charge density at z_e → screens enable transverse beam size measurements and tuning of optics and waist location
 4) Set and record the electron bunch injection angle θ_i (by using also a second screen upstream of the waist location)

partrec

Seeding of self-modulation and hosing

Seeding of the <u>self-modulation</u> (SM) and <u>hosing process</u>

For this the electron beam should be:

- shorter than λ_{pe} : used 200 pC \rightarrow ~3 ps rms length
- focused at the entrance of the vapour source
- of symmetric transverse distribution (see next slide)

Seeding of the self-modulation (SM) and hosing process

For this the electron beam should be:

- shorter than λ_{pe} : used 200 pC \rightarrow ~3 ps rms length
- focused at the entrance of the vapour source
- <u>of symmetric transverse distribution (see next</u> slide)

Seeding of SM:

 aligned on the proton bunch trajectory (on axis) using YAG +0.5m and YAG +1.5m

Seeding of hosing:

• induced by (parallel) transverse displacement of the proton bunch w.r.t. the electron bunch (as was done in Tatiana's work) => See Michele's talk

Alignment challenges

Non-symmetric transverse distributions on YAG +1.5m:

• Difficult to determine beam centre due to large horizontal beam size (due to dispersion), tails and multiple maxima (which one should we align to..?)

on the fit.

07.11.24

Acceleration experiments

External off-axis injection of witness particles External injection ? \rightarrow relatively low amplitude wakefields (~0.5 GV/m) of high phase velocity (relativistic factor $\gamma \sim \gamma_{p+} \sim 427$)

External off-axis injection of witness particles

External injection ? \rightarrow relatively low amplitude wakefields (~0.5 GV/m) of high phase velocity (relativistic factor $\gamma \sim \gamma_{p+} \sim 427$)

Off axis injection ? \rightarrow and several meters into the vapour source at a position (ze ~ 1-6m), to avoid the loss of witness particles due to wakefield phase shifts occurring during SM or from the density step \rightarrow this requires flexibility of the setup to be able to focus the beam meterwise along the vapour source

External off-axis injection of witness particles External injection ? \rightarrow relatively low amplitude wakefields (~0.5 GV/m) of high

phase velocity (relativistic factor $\mathbf{\gamma} \sim \mathbf{\gamma}_{p+} \sim 427$)

Off axis injection ? \rightarrow and several meters into the vapour source at a position occurring during SM or from the density step \rightarrow this requires flexibility of the setup to be able to focus the beam meterwise along the vapour source

(ze $\sim 1-6m$), to avoid the loss of witness particles due to wakefield phase shifts

Electron witness beam setups used for acceleration experiments (2024)

Site of injection is set to be == focal point of electron bunch

Beam waist at 1.5m

Charge: 400pC or 800pC Max injection angle ~7mrad

A IV-A-K-E

- Two most common configurations

Beam waist at 5.5m

Charge: 400pC or 800pC Max injection angle ~1.2mrad

Electron witness beam setups used for acceleration experiments (2024)

Two most common configurations

Site of injection is set to be == focal point of electron bunch

Beam waist at 1.5m

Charge: 400pC or 800pC Max injection angle ~7mrad

> Maximum injection angle without significant beam losses at the entrance aperture

partrec

Beam waist at 5.5m

Charge: 400pC or 800pC Max injection angle ~1.2mrad

Beam waist at 1.5 m

Charge: 400 pC Injection angle ~7 mrad Measurement on YAG +1.5m

Site of injection is set to be == focal point of electron bunch

Beam waist at 5.5 m

Charge: 400 pC Injection angle ~1.2 mrad Measurement on YAG +5.5m

Dashed horizontal lines: plasma skindepth for plasma electron density of 2e14 Red circle: proton bunch 1σ contour

Measurement of the electron beam waist location

10

2σ_{x, y} [mm]

Beam waist at 1.5m

Charge: 400pC Max injection angle ~7mrad

Charge: 400pC Max injection angle ~1.2mrad

partrec

Measurement of the electron beam waist location

Beam waist at 1.5m

Charge: 400pC Max injection angle ~7mrad

Charge: 400pC Max injection angle ~1.2mrad

07.11.24

Electron beam centroid position jitter at focus (for 400 pC and 800 pC bunches used in acceleration experiments)

Beam centroid and sizes calculated using Gaussian fits to the hor. / ver. projections

Beam waist at 1.5m

For 400 pC $< \frac{90}{4}$ µm with a beam size of 500/420 µm For 800 pC < 105 µm with a beam size of 690/770 µm

Beam waist at 5.5m

For 400 pC $< 85 \mu$ m with a beam size of 650/580 μ m For 800 pC $< 105 \mu m$ with a beam size of 770/700 μm

partrec

Α	W

ocus	Charge [pC]	Sig_x [mm]		Sig_y [mm]		Cent jitter
1.5m	200		0.441± 0.023		0.349 ± 0.01	(0.051,	
1.5m	400		<mark>0.498</mark> ± 0.022		<mark>0.418</mark> ± 0.047		(0.090,
1.5m	800		<mark>0.687</mark> ± (0.045	<mark>0.768</mark> ± 0.05	58	(0.102,
ocus	Charge [pC]	Si	g_x [mm]	S	big_y [mm]		Centre Jitter [r
5.5m	200	0.4	11 ± 0.022	2 0.5	513 ± 0.043		(0.043, 0
5.5m	400	<mark>0.6</mark>	<mark>50</mark> ± 0.080) <mark>0.</mark>	<mark>582</mark> ± 0.050		(0.081, 0
5.5m	800	<mark>0.7</mark>	<mark>64</mark> ± 0.098	3 <mark>0.</mark>	<mark>693</mark> ± 0.059		(0.101, 0

Electron beam centroid position jitter at focus (for 400 pC and 800 pC bunches used in acceleration experiments)

Beam centroid and sizes calculated using Gaussian fits to the hor. / ver. projections

Beam waist at 1.5m

For 400 pC <<mark>90</mark> µm with a beam size of 500/420 µm For 800 pC < 105 µm with a beam size of 690/770 µm

Beam waist at 5.5m

For 400 pC $< 85 \mu$ m with a beam size of 650/580 μ m For 800 pC $< 105 \mu m$ with a beam size of 770/700 μm

Conclusion: electron beam position jitter smaller than the transverse beam size

partrec

Α	W

ocus	Charge [pC]	Sig_x [mm]		Sig_y [mm]		Cent jitter
1.5m	200		0.441± 0.023		0.349 ± 0.01	(0.051,	
1. 5m	400		<mark>0.498</mark> ± 0.022		<mark>0.418</mark> ± 0.047		(0.090,
1.5m	800		<mark>0.687</mark> ± (0.045	<mark>0.768</mark> ± 0.05	58	(0.102,
ocus	Charge [pC]	Si	g_x [mm]	S	big_y [mm]		Centre Jitter [r
5.5m	200	0.4	11 ± 0.022	2 0.5	513 ± 0.043		(0.043, 0
5.5m	400	<mark>0.6</mark>	<mark>50</mark> ± 0.080) <mark>0.</mark>	<mark>582</mark> ± 0.050		(0.081, 0
5.5m	800	<mark>0.7</mark>	<mark>64</mark> ± 0.098	3 <mark>0.</mark>	<mark>693</mark> ± 0.059		(0.101, 0

Adjusting electron beam timing (w.r.t laser pulse)

- Commonly needed for acceleration studies to investigate the wakefields along the proton bunch. Adjustment range: ~ [50, 600] ps
- For seeding/hosing: close to the laser pulse (~ 0ps)

University Medical Center Groningen

partrec

Proton bunch rms length ~200ps Electron bunch rms length ~ 2-5ps

Adjusting electron beam timing (w.r.t laser pulse)

- UV pulse is derived from main laser pulse
- RF system and booster structure timing are synched with the main laser pulse
 - <=> Change electron beam delay
 - <=> Delay UV pulse on cathode
 - <=> Adjust RF phase to compensate

=> These adjustments may change the electron beam alignment

07.11.24

Adjusting electron beam timing (w.r.t laser pulse)

- UV pulse is derived from main laser pulse
- RF system and booster structure timing are synched with the main laser pulse
 - <=> Change electron beam delay
 - <=> Delay UV pulse on cathode
 - <=> Adjust RF phase to compensate

=> These adjustments may change the electron beam alignment

--> Scanned delay stage over its travel range for different charges and observed that: • Centroid position shifts < centroid position jitters for all cases

partrec

Adjusting electron beam timing (w.r.t laser pulse)

- UV pulse is derived from main laser pulse
- RF system and booster structure timing are synched with the main laser pulse
 - <=> Change electron beam delay
 - <=> Delay UV pulse on cathode
 - <=> Adjust RF phase to compensate

=> These adjustments may change the electron beam alignment

Scanned delay stage over its travel range for different charges and observed that:
Centroid position shifts < centroid position jitters for all cases

→ Conclusion: adjustment of the electron beam timing does not compromise its alignment

Delay [ps]

Deleterious effects (I)

- The current in the spectrometer magnets (dipole and quadrupole doublet) are commonly varied during acceleration studies (see Fern's talk)
- It was observed that this directly affects the alignment • of the injection beam at the injection location

Deleterious effects

- The current in the *spectrometer* magnets (dipole and quadrupole doublet) are commonly varied during acceleration studies (see Fern's talk)
- It was observed that this directly affects the alignment of the injection beam at the injection location
- Measurements (Figures on the RHS) show beam position changes for a 400pC beam, focused at +5.5m. The beam position changes on the mm-scale >> c/w_{pe}!

Deleterious effects

- The current in the spectrometer magnets (dipole and quadrupole doublet) are commonly varied during acceleration studies (see Fern's talk)
- It was observed that this directly affects the alignment of the injection beam at the injection location
- Measurements (Figures on the RHS) show beam position changes for a 400pC beam, focused at +5.5m. The beam position changes on the mm-scale >> c/w_{pe}!

Electron beam alignment is checked after every current change and prior to taking the next measurement

Deleterious effects (II)

- The electron beam position on the BPMs showed significant "jumps" (black line), matching the SPS magnet ramping frequency (~every 20s) (green line)
- This was also observed on the beam screen after the first vertical dispersive element of the line (of lower magnitude (red line)
- At the focal point (here on the screen 5.5m into the vapour source) these jumps are within beam centroid jitters (blue line)

NB: Only vertical displacements at the site of injection are plotted since injection occurs in the horizontal plane

Deleterious effects (II)

- The electron beam position on the BPMs showed significant "jumps" (black line), matching the SPS magnet ramping frequency (~every 20s) (green line)
- This was also observed on the beam screen after the first vertical dispersive element of the line (of lower magnitude (red line)
- At the focal point (here on the screen 5.5m into the vapour source) these jumps are within beam centroid jitters (blue line)

- Most of the time this effect was not observed at the injection location.
 - If they were observed \rightarrow alignment performed with extraction events only.

NB: Only vertical displacements at the site of injection are plotted since injection occurs in the horizontal plane

- millimetres.
- the heaters off.

Before

Centroid jumps of ~ 1.5mm!

Deleterious effects (thrice)

During SPS extraction, the electron beam position was observed to shift by several

• Some vapor source heaters remained on during extraction, though they should be off before beam arrival. This issue was resolved by adjusting the trigger timing, that turns

07.11.24

- millimetres.
- the heaters off.

Before

Centroid jumps of ~ 1.5mm!

Deleterious effects (thrice)

A WAKE

During SPS extraction, the electron beam position was observed to shift by several

• Some vapour source heaters remained on during extraction, though they should be off before beam arrival. This issue was resolved by adjusting the trigger timing, that turns

After

Typical beam centroid jitters ~100 microns

07.11.24

Summary and Conclusions

Different experiments require large flexibility of the e-beam setup in terms of:

•Beam waist position (different locations along the vapour source) •Alignment (on axis: SM and hosing; off-axis: probing wakefield amplitudes)

The addition of YAG screens inside the vapour source allows for the verification of :

- electron and proton beam alignment for seeding of SM and hosing as well as external injection of witness particles to probe wakefields
- electron beam optics up to and around focus
- solvable through clear and concise procedures

• and determination, and mitigation of any external factors and their effect on the

electron bunch (position and shape) => which may compromise experiments =>

Thank you for listening!

University Medical Center Groningen

partrec

The End

Backup slides

Focus	Charg	Sig_x	Sig_y	Centroid jitter	Focu s	Charge	Sig_x	Sig_y	Centroid jitter	Foc us	Charg e	Sig_x	Sig_y	Centr
	е				1.5m	200pC	0.441±	0.349±	(0.051, 0.042)mm	5 5m	200n	0 411+	0 513+	(0.043
0.5m	200pC	0.386±	0.295±	(0.030,			0.023mm	0.017mm	(01001) 010 12)	0.011	C	0.022mm	0.043mm	(0.040,
		0.019mm	0.024mm	0.032)mm	1.5m	400pC	0.498±	0.418±	(0.090, 0.075)mm	5.5m	400p	0.650±	0.582±	(0.081,
0.5m	400pC	0.668±	0.519±	(0.047,			0.022mm	0.047mm			С	0.080mm	0.050mm	
		0.055mm	0.020	0.036)mm	1.5m	800pC	0.687± 0.045mm	0.768± 0.058mm	(0.102, 0.097)mm	5.5m	800p	0.764±	0.693±	(0.101,
											U	0.0301111	0.0091111	

Errorbars are variations in beam size and error on the fit. Centroid jitters over 100 1Hz events.

Focus at iris beamsizes measured on BTV54, BTVEXPVOL and CAM1

Focus	Charge	Sig_x	Sig_y	Centroid jitter
0.5m	200pC	0.386± 0.019m m	0.295± 0.024mm	(0.030, 0.032)mm
0.5m	400pC	0.668± 0.055m m	0.519± 0.020	(0.047, 0.036)mm

Errorbars plotted are variations in beam size and error on the fit.

<u>Electron beam setup:</u>

 Electron creation: illuminating a Cs_2Te cathode with a UV laser pulse (typical spot size: ~1mm, average energy: ~200nJ, top hat intensity profile).

Select	Process	Targ	et			
Device S	Selection					
Camer	a:		TCV	4.UV_CAT	HODE 👻	
Trigge	r:		Laser			
Laser	Frame Rate	[Hz]:			10	
		St	ор			
	Get	upda	ted ta	arget		
Camera	Properties					
Expos	ure Time [us	;]			1000	
Delay	Time [us]				0.0	
Pixel S	ize [mm]				0.0192	
Gain					0.5	
Display	Properties					
Select	Colormap:		jet		*	
Select	Color Scale	Line	ear	*		
✓ Autoscale: Min: 0 Max: 4096						
Aspect	t Ratio: 🗌	Auto		● Eq	ual	
	9	Save a	nd Lo	og		

Subscriptions Started

Electron beam setup:

- Electron creation: illuminating a Cs_2Te cathode with a UV laser pulse (typical spot size: ~1mm, average energy: ~200nJ, top hat intensity profile).
- These bunched electrons are then accelerated to an energy of ~5MeV in an S-band RF-photo-injector.
- Two low-energy solenoids located after the photo-injector focus the electrons inside the 1m-long travelling wave booster structure, where they are further accelerated to ~19MeV, and hand them over to the transfer line.
- Charge can be varied between 100-800 pC (measured at a Faraday cup)

RF-photoinjector

<u>Electron beam setup:</u>

- the first beam screen (BTV)
- the beam out of the gun is matched to the beam line (Vittorio Bencini)
- numerical optimisation

- is set at the location of injection
- (MADX tracking) beam sizes

Bunch length, normalised emittance and charge as a function of RF gun phase

<u>Phase shifter 1105, WG 342, 0mm</u>

Charge	Emittance mm*mrad	Length p
<mark>lris 300</mark> 375pC	(3.70, 2.74)	4.22± 1.14
Iris 200 325pC	(2.86, 2.71)	3.64±1.1
Iris min 275pC	(2.68, 2.44)	3.15± 1.28
Iris min with OD+0.3: 250pC	(2.65, 2.17)	2.87±1.1
Iris 400: 650pC	(4.81, 5.45)	4.63±0.77

4

Bunch length and normalised emittance as a function of charge; phase fixed; timing fixed after realignment

certain momentum).

Estimation of injection angle and limitations for large ze

e.g. take 2mm (two standard deviations) wide beam. In order to not have cutting at entrance => max offset 7mm (red line), 5mm max offset for beams max 4mm wide (pink line)

<u>Angles assuming straight line trajectories</u> (0.5m-4.5m)

Wide possibility of injection angles; can cover up to 4.5m with same angle (max up to 5mrad for z=0.5m,1.5m and 2.5m) then below 2.5mrad.

Estimation of injection angle and limitations for large ze

e.g. take 2mm (two standard deviations) wide beam. In order to not have cutting at entrance => max offset 7mm (red line), 5mm max offset for beams max 4mm wide (pink line)

Angles assuming straight line trajectories (4.5m-9.5m)

Narrower choice, very flat injection angle up to possibly 1.2mrad for all; however not guaranteed.

Also raises the problem of entering the plasma column before the point of injection e.g. the offset would be 1mm (~radius plasma column) 1m prior e.g. for 9.5m and this does not take beamsize into account (may enter even earlier)

- 2.1

- 1.5

- 0.6

- 0.3

Electron beam seeding images XMPP

2e14, 3e11, 200pC, XMPP

A WAKE

07.11.24

