

Suppression of the SM Process

M. Turner, J. Mezger, A. Clairembaud, N. Z. van Gils, F. Pannell, L. Ranc, M. Bergamaschi and P. Muggli

Self-modulation is an instability \rightarrow requires feedback loop

Seed wakefields \rightarrow modulate bunch density

Bunch with modulated density drives stronger wakefields

P. I. Morales Guzmán et al. (AWAKE Collaboration), PRAB 2021

Self-modulation is an instability → requires feedback loop **Prediction from theory:** for sufficiently large **positive** plasma density gradients, SM growth is suppressed

- relative radial modulation of the bunch vs. linear density gradient (log scale) ∝ Wakefields

Self-modulation is an instability → requires feedback loop

Prediction from theory: for sufficiently large **positive** plasma density gradients, SM growth is suppressed

- relative radial modulation of the bunch vs. linear density gradient (log scale) ∝ Wakefields

Self-modulation is an instability → requires feedback loop

Prediction from theory: for sufficiently large **positive** plasma density gradients, SM growth is suppressed

- relative radial modulation of the bunch vs. linear density gradient (log scale) ∝ Wakefields

Wakefield suppression signatures on streak camera images and plasma light

Wakefield suppression signatures on streak camera images and plasma light

CERN A IVAKE

07.11.2024

Wakefield suppression signatures on streak camera images and plasma light

07.11.2024

AIVAKE

Wakefield suppression clear on streak camera images and plasma light

Plasma Light & Streak Camera Measurements

Regime where plasma light 'likely local'

Similarities:

- E_z^2 decreases with + and gradients \rightarrow clear signature of suppression
- Decrease is faster for positive than negative gradients
- Next step: compare plasma light to energy deposited

Measurement at High N_{p+}

 $n_{pe} = 2x10^{14} \text{ cm}^{-3}, N_{p+} = 3x10^{11} \text{ protons/bunch}, \text{ RIF: +200ps}$

Measurement at High N_{p+}

LCODE

Plasma Light Increases for Small Positive Gradients

Consistent with theoretical expectation

Plasma Light Increases for Small Positive Gradients

Summary & Conclusions

- Theoretical prediction: Large positive n_{pe} gradients suppress the development of the self-modulation C. B. Schroeder, et al., *Phys. Plasmas* 19, 010703 (2012) (SM) process.
 - This occurs as changes in the plasma wavelength impact the instability's feedback loop
 - Experimentally observed, including for negative gradients
 - Process is asymmetric, faster for the positive gradients
 - Suppression observed with $5x10^{10}$ protons/bunch and gradients of $\pm 2\%/m$.
 - **"Small" positive gradients**: predicted to increase the wakefield amplitude by compensating for wakefield phase shifts occurring during self-modulation.
 - Observed with a bunch population 3x10¹¹ protons/bunch
 - Consistent with larger energy gains observed with small + gradients in 2018

