Towards full baseline simulations of Run 2c

M. Moreira

CERN, Geneva Switzerland

Motivation

Goals

- 1. Demonstrate energy gain of **3 GeV over 10 m** for Run 2c, as realistically as possible
- 2. Establish fast **"workhorse" simulations** for subsequent parameter scans and optimization studies

What are we simulating?

\rightarrow Consider both RIF and electron seeding

 \rightarrow Use (mostly) nominal AWAKE parameters

 \rightarrow 2D cyl. geometry

Electron bunch

Bunch charge	Q_e	$500~{ m pC}$
RMS longitudinal bunch size	$\sigma_{z,e}$	$2.2~\mathrm{ps}$
RMS transverse bunch size	$\sigma_{x,e}=\sigma_{y,e}$	$250~\mu{ m m}$
Electron energy	E_e	$18 { m MeV}$
Normalized emittance	$arepsilon_N$	$2~\mathrm{mm}~\mathrm{mrad}$

Proton bunch

Bunch population	N_b	$3 imes 10^{11}$
RMS longitudinal bunch size	$\sigma_{z,p}$	$170 \mathrm{\ ps}$
RMS transverse bunch size	$\sigma_{x,p} = \ \sigma_{y,p}$	$200~\mu{ m m}$
Proton energy	E_p	$400~{ m GeV}$
Normalized emittance	$arepsilon_N$	$2.2 \mathrm{~mm} \mathrm{~mrad}$
Energy spread	$\Delta E_p/E_p$	0.035%
Relativistic ionization front (RIF) position relative to bunch center	$\Delta \xi_{ m RIF}$	$200~{ m ps}$
Electron bunch seed position relative to bunch center	$\Delta \xi_{ m ES}$	$600 \mathrm{\ ps}$
Longitudinal profile	$f(\xi)$	cosine
Transverse profile	g(r)	Gaussian

Using a realistic plasma density step

 \rightarrow Step parameters found in previous optimisation studies*

 \rightarrow Step width was interpolated between 10 cm for +1% and 80 cm for +10%, as suggested by measurements**

 \rightarrow Assume sigmoid-shaped*** step with width of 18.75 cm:

$$n_p(z) = rac{n_{ ext{step}} - 1}{2} \left[1 + rac{z - z_{ ext{step}}}{A \sqrt{ig(rac{z - z_{ ext{step}}}{A}ig)^2 + rac{1}{4}}}
ight] + n_0$$

Plasma

Plasma density	n_0	$7 imes 10^{14}~{ m cm^{-3}}$
Plasma radius	r_p	$0.15~{ m cm}$
Step location	$z_{ m step}$	$1.25~\mathrm{m}$
Step height	$n_{ m step}$	$1.03 \ n_0$
Step width	$L_{ m step}$	$18.75~\mathrm{cm}$
Vacuum gap length	$\Delta z_{ m gap}$	$1 \mathrm{m}$

^{*} J. Farmer, <u>"Latest input from simulations II"</u>, AWAKE Run 2 Retreat, 31 March 2023 ^{**} M. Bergamaschi, "The new Rb vapour source", AWAKE Collaboration Meeting 4-6 October 2023

*** G. Plyushchev, et al., J. Phys. D: Appl. Phys. 51, 025203 (2018)

General setup

- 1. RIF/ e^- -seeded self-modulation (SM'or)
 - plasma density step
- 2. gap propagation
 - computed externally
- 3. e^- witness injection and acceleration (ACC'or)
 - entrance and exit density ramps

What are some potential challenges?

Numerical:

- Accurately simulating evolution of electron bunch driver with larger timesteps (quasistatic codes) see K. Lotov, V. Yarygova
- Accuracy of simulations with a varying plasma density (quasistatic codes)
- Numerical convergence over long windows

Physics:

- Finding an optimum (emittance, energy, charge) see K. Lotov, J. Farmer
- Realistic (potentially non-axisymmetric) electron bunches (i.e. produced by MAD-X, taking scattering from foils into consideration etc.)
- Effect of exit density ramp on accelerated witness bunch see J. Pucek, P. I. Morales Guzmán
- Sensibility to transverse offsets see M. Weidl, T. Wilson, K. Lotov
- Effect of lower density uniformity in accelerator stage

What are some potential challenges?

Numerical:

- Accurately simulating evolution of electron bunch driver with larger timesteps (quasistatic codes) see K. Lotov, V. Yarygova
- Accuracy of simulations with a varying plasma density (quasistatic codes)
- Numerical convergence over long windows

Physics:

- Finding an optimum (emittance, energy, charge) see K. Lotov, J. Farmer
- Realistic (potentially non-axisymmetric) electron bunches (i.e. produced by MAD-X, taking scattering from foils into consideration etc.) – see L. Liang, M. Ahsan, J. Farmer
- Effect of exit density ramp on accelerated witness bunch see J. Pucek, P. I. Morales Guzmán
- Sensibility to transverse offsets see M. Weidl, T. Wilson, K. Lotov
- Effect of lower density uniformity in accelerator stage

Comparison for a short window, electron bunch only

Accuracy of simulations with a varying plasma density

Electron bunch evolution

Total electron bunch charge

Electron bunch emittance

Normalized effective (Lapostolle) emittance.

Comparison for a long window

Numerical convergence over long windows Accurately simulating evolution of electron bunch driver with larger timesteps (quasistatic codes)

Electron bunch emittance - long window

Normalized effective (Lapostolle) emittance.

Conclusion

- Simulations are crucial for the success of Run 2c
- Work is ongoing to obtain realistic, baseline simulations
- Please reach out if you think of further risks that should be considered!

