

Update on the development of scalable plasma sources at CERN

Birger Buttenschön, Olaf Grulke (IPP Greifswald)

Marcelo Baquero, Renat Karimov, Christine Stollberg, Philippe Guittienne, Ivo Furno (EPFL/SPC)

Marcel Granetzny, Michael Zepp, Barret Elward, Oliver Schmitz (University of Wisconsin)

Nelson Lopes, Nuno Torrado (IST-Lisbon)

Claudia Cobo, Louis Forrester, Zulfikar Najmudin (Imperial College London)

Carolina Amoedo, Miguel Santos, Alban Sublet (CERN)

Scalable plasma source R&D

- Demonstrate uniformity, scalability and reproducibility within spec.: n_e = 7x10¹⁴ cm⁻³/0.25% uniformity
- \rightarrow Focus on plasma diagnostics with 1 m helicon plasma source (HPS) and 3 m discharge plasma source (DPS)
- → Get inputs from institutes for hardware design/optimization based on simulations and local experiments
- \rightarrow Build scalable modules at CERN
- Milestones:
- \rightarrow 1st milestone achieved = 10 m DPS test with protons in the AWAKE tunnel "DPS May 2023 Run"
- \rightarrow End 2024 = First density uniformity profile for both sources
- \rightarrow End 2025 = Internal review whether scalable technology can already be used for Run 2c
- → Scalable Plasma Source review (around 2027): decision for Run 2d scalable source, procurement and design

A WA-KH

HPS 2024 program

- Hardware upgrades for stable RF-operation (no arcing) and reproducibility (matching, directional couplers) \rightarrow CERN
- **Diagnostics comparison** to rule out discrepancies between diagnostics (effect of viewport...) → IPP/EPFL/CERN
- Axial density profile with two types of RF-antennas to assess plasma uniformity \rightarrow EPFL/CERN
- Helicon waves simulations and **parameters studies** → Univ. Wisconsin
- Share diagnostic for axial density profile with DPS \rightarrow EPFL/CERN

AWAKE

HPS diagnostics comparison

EPFL

EPFL

- \rightarrow Thomson scattering (TS)
- n_e and T_e measurements
- Local (in space and time)
- Time scan
- Axial profile (moving collection optic)
- Needs absolute calibration
- Needs accumulation of 100's of shots

- ightarrow Langmuir probe (LP)
- Plasma/floating potential
- Local

٠

- Time-resolved
- Shot to shot evaluation
- Transverse profile (moving the probe)
 - Need fit and model to retrieve n_e

- \rightarrow CO2 Interferometer
- Line integrated density
- Time-resolved

MAX PLANCK INSTITUTE

- Shot to shot evaluation
- Radial profile (moving the cell)
- Abel inversion to retrieve n_e

- Line integrated density
- 100 GHz cut-off → n_e = 1.24x10²⁰ m⁻³
- Time-resolved

EPFL

- Shot to shot evaluation
- ~ 10 mm waist at focus!

HPS diagnostics comparison → 9kW/350A

- \rightarrow Langmuir probe shows plasma expansion in the viewport, especially at start of RF-pulse (< 0.5 ms)
- \rightarrow Line integrated dynamic of CO₂ interferometer at start must be taken with caution (non-axisymmetric)!
- \rightarrow Focus on "steady state" > 1ms to compare diagnostics

HPS diagnostics comparison → B-field scan

A WAKE

- 2 days for full axial scan:
- At each position: Raman, TS, plasma background, Raman \rightarrow statistic uncertainty + calibration
- In steady-state, axial homogeneity ± 6 % (200 mm 600 mm), better than expected ③

HPS parameters studies

Conclusions

- Next-generation particle accelerators require high density and high axial uniformity
- We have identified actuators to control density profile, as summarized in the table
- We have found a strong link between the fueling of the plasma with neutral argon and the resultant density profile

Parameter	Effect	
Chamber diameter	Radial fueling dominates in small-diameter chamber; axial fueling dominates in large-diameter chamber.	
Number of Antennas	Two-antenna <i>n</i> profile is linear superposition of one-antenna profiles.	
Neutral Flow	Low $v_i - v_n$ leads to more uniform profile with no neutral flow.	
Pressure	Tradeoff between density and homogeneity.	
Power	Density increases with power with little effect on homogeneity $(1 - 2 \text{ kW})$	

AWAKE

DPS 2024 program

- **Transverse interferometry** diagnostic development, OES and new pulse generators → Imperial College
- Parameters scans (pressure/current/repetition rate) + statistics to assess stability and reproducibility
 → CERN/IST
- Plasma electrical characterization and smaller diameter tube studies (higher ionization fraction) \rightarrow IST
- Build and commissioning of a 3 m DPS to benchmark with 10 m source and prepare for Thomson Scattering \rightarrow CERN
- Radial density profile with 3 m DPS using interferometry (longitudinally average) \rightarrow CERN
- Thomson scattering to assess axial density uniformity of 3 m DPS \rightarrow EPFL/CERN

A WAKE

Discharge Plasma Source at ICL

Imperial College London

Parameter	ICL Value	CERN Value	Unit
Tube length	1	10	m
Diameter	19.5	26	mm
Discharge gap	15	25	cm
Gas pressure	0.01 – 1.5	0.01 – 1	mbar
Discharge current	~ 400	100 - 600	А
Discharge time	5-25	~25	μs
Plasma electron density	1 – 10	0.1 – 20	10 ²⁰ m ⁻³
Ionisation degree	1	~ 20	%

Imperial College London

Claudia Cobo

High voltage switch

Compact, 16 cubic inch Tolerates full current ringing Multi-stage optically isolated trigger Arbitrary pulse width

High repetition rate operation tested on resistive-inductive dummy load

- Successful at 630 A peak 500 kHz
- And 500 A peak operation at 1 MHz

Claudia Cobo

Plasma Diagnostics – November 2024

Imperial College

London

Imperial College London

Claudia Cobo

14

Emission Spectroscopy

Imperial College London

Bentham M300 Czerny-Turner spectrometer used to measure spectrum over 1 m tube

Aberrations corrected with cylindrical lens and postprocessing

Imaging spectrometer currently being tested

Spectra integrated over different parts of tube

Suggests uniformity measurements averaged over ~15 cm are possible

Transverse Multi-Pass Interferometry

Demonstrated 19 pass MZ configuration in air

Imperial College

London

Diagnoses 8 cm long region

Implementation through tube in progress

Imperial College London

DPS plasma density reproducibility

- Improve the control of the pressure and current of the discharge ٠
- Room temperature controlled (variations <0.1° C)
- Series of 200 discharges, at 0.1 Hz repetition rate

DPS plasma density reproducibility

Over 200 discharges:

Longitudinally integrated interferometry

Michelson interferometer

• Measurement arm (plasma) adds a phase shift ϕ_i proportional to the plasma density n_e :

$$\phi_i = \frac{n_e}{r_e \,\lambda_i L}$$

where r_e is the classic electron radius ($r_e = 2.82 \times 10^{-15} m$), λ_i is the laser wavelength and L is 2x the length of the plasma.

Every interferogram has a different "history", but they tell the same "story"

DPS plasma density reproducibility

IST AWAKE DPS stability runs (in progress)

tube ϕ_i = 25 mm , L = 5 m

 $I_{heat} = 400 \text{ A}, P = 18 \text{ Pa}$

Automatic operation Gas renewal after each discharge Fixed repetition rate (2 min) $n_a = 4.40 \times 10^{15} \text{ cm}^{-3}$ $n_e = 0.60 \times 10^{15} \text{ cm}^{-3}$ $J = 81.5 \text{ A cm}^{-2}$ $n_e/n_a = 13.6 \%$

DPS plasma electrical characterisation

Plasma resistance measurements

In the CERN 10 m set-up, we can measure the applied voltage and the plasma current

During the heater pulse, the pulse generator output can be simplified to an RLC circuit \rightarrow calculate the plasma resistance

TECNICO

LISBOA

IJİ

DPS plasma electrical characterisation

Plasma resistance measurements

Pspice simulation → modeling the electric circuit of the pulsed power generators
→ Very important for the design

Compare experimental results with electrical simulations

Plama resistance model obtained from Cassie's Arc Model:

$$r(t) = \int \left(1 - \left(\frac{\nu(t)}{V_0}\right)^2\right) \frac{r(t)}{\theta} dt$$

r: time-varying arc resistancev: instantaneous arc voltage

ſſ

ÉCNICO

LISBOA

Plasma current density scan

IST AWAKE DPS stability runs (in progress)

tube $\phi_i = \frac{12 \text{ mm}}{12 \text{ mm}}$, L = 3.3 m I_{heat} = 400 A, P = 10 Pa

 $n_a = 2.47 \times 10^{15} \text{ cm}^{-3}$ $n_e = 0.94 \times 10^{15} \text{ cm}^{-3}$ **J = 353 A cm}^2** $n_e/n_a = 37.9 \%$ tube $\phi_i = 25 \text{ mm}$, L = 5 m I_{heat} = 400 A, P = 10 Pa

 $n_{a} = 4.40 \times 10^{15} \text{ cm}^{-3}$ $n_{e} = 0.60 \times 10^{15} \text{ cm}^{-3}$ $J = 81.5 \text{ A cm}^{-2}$ $n_{e}/n_{a} = 13.6 \%$

Comparison tube 25 mm / 12 mm @ 400 A & 10 Pa J increases 4.3 X n_e/n_a increases 2.8 X Work in progress Systematic data for

25mm and 12mm diameter tubes

Nelson Lopes TAWAKE Collab. Meetingl CERN, Nov 2024

Tests with high current densities 0.4 - 1.0 kA/cm2 in tubes 12-25 mm

Length scalability demonstration - up to 5 plasmas

High precision gas pressure control

Improvement of interferometry precision

Precise tube temperature control

Operation at high reproducibility

New electric kit

Last results from CERN

- 1. New 3 m set-up in preparation of Thomson scattering measurement
- 2. Radial scan with longitudinal average interferometry

Thomson scattering on DPS: Fall/winter 2024

- \rightarrow local plasma density measurement along the source (at a specific point in time)
- \rightarrow time-scan also possible: different laser-discharge delays \rightarrow benchmark time-evolution density

EPFL

Last results: radial profile

Longitudinally integrated interferometry

Parameters: Gas: Ar Pressure: (23.94±0.02) Pa Peak current: (400±3) A Heater voltage: 6.27 kV Pulse duration: 25 μs Plasma length: 3 m

Carolina Amoedo | AWAKE collab meeting | November 2023

23.95

23.94

23.93

23.92

23.91

10

pressure [Pa]

Rep rate 0.5 Hz \rightarrow over the 50 repetitions decreases ٠

Still very reproducible among the different sets ٠

10

Overall \rightarrow current (400±3) A < 1 % ٠

Peak current

403

402

401

400

399

398

397

0

peak current (A)

Pressure 23.96

> +0-7

> > 50

20

shot #

30

40

20

Overall \rightarrow pressure (23.94±0.02) Pa (~0.1%)

over the 50 repetitions \rightarrow pressure rising ~ 0.02-0.03 Pa

shot #

30

40

50

Last results: radial profile

Raw data

*normalized to -1 to 1 (domain of arcsin)

- Selected shots (same phase)
- Clear difference between radial positions
 - 4 groups
 - |8| mm
 - |6| mm
 - |4| mm
 - < |2| mm
 - Number of fringes \rightarrow density
 - and position of 1st stagnation point → time evolution of density

Last results: radial density profile

- |8| mm
- |6| mm
- |4| mm
- < |2| mm

At peak density (r=0)

Carolina Amoedo | AWAKE collab meeting | November 2023

Last results: radial density profile

CERN

- 4 groups
 - |8| mm
 - |6| mm
 - |4| mm
 - < |2| mm

Summary

- Hardware consolidation/developments to support stability, although some reproducibility issues on HPS as seen by TS
- Diagnostic developments at institutes and CERN → comparison and combination to further characterize plasma
- Reasonable match (~ 30% difference) between CO₂ interferometry and Thomson scattering on HPS in steady state
- Axial density profile on HPS: +/- 6% uniformity over 0.5 m for helical antennas, ring antenna results coming soon!
- DPS longitudinally integrated density measured by interferometry < 2% shot to shot reproducibility (at CERN + IST)
- First radial scan of 3 m long DPS showing flat density over ~ 4 mm diameter
- Axial density profile on 3 m DPS due by the end of the year

2024 PhDs/publications:

- 2 PhDs thesis completed at University of Madison (Marcel and Michael)
- M. Zepp, "Direct measurement of the 2D axisymmetric ionization source rate in a helicon plasma for wakefield particle accelerator applications", Physics of Plasmas, DOI
- C. Stollberg, "First Thomson scattering results from AWAKE's helicon plasma source", Plasma Physics and Controlled Fusion, DOI

Thank you for your attention

