Transient beam loading for reverse phase operation mode

Ivan Karpov, Franck Peauger, Xavier Buffat with input from: Olivier Brunner, Rama Calaga, Heiko Damerau, Jiquan Guo (JLAB), Frank Gerigk, Wolfgang Höfle, Eric Montesinos, Igor Syratchev, Shahnam Gorgi Zadeh, Alice Vanel, Jorg Wenninger

192nd FCC-ee Optics Design Meeting & 63rd FCCIS WP2.2 Meeting, 26.09.2024

Reverse phase operation

Reverse phase operation (RPO) mode allows increasing RF cavity voltage (Y. Morita et al., SRF, 2009)

- Experimentally verified with high beam loading in KEKB (Y. Morita et al., IPAC, 2010)
- Baseline solution for EIC ESR (e.g., J. Guo et al., IPAC, 2022)

*Electron convention for synchronous phase: $\phi_{s,proton} = \frac{\pi}{2} + \phi_{s,electron}$

2

Transient beam loading

Gaps in machine filling will result in modulation beam parameters (bunch length and phase)

→ Modulations might impact luminosity and/or beam stability

Conventional approaches:

- Particle tracking simulations (difficult for 11200 bunches in FCC-ee Z)
- Steady-state time domain method (J. Tückmantel, 2011)
- Small-signal model in frequency domain (F. Pedersen, 1992)
- \rightarrow Tracking simulation were applied for EIC (1160 bunches)
- \rightarrow Small-signal model was adapted for the RPO case of FCC up to now

Reduced Pedersen model

General equations of beam-cavity interactions with reverse phase operation (RPO) mode (adaptation of formalism in *J. Tückmantel, 2011*):

$$I_{gf}(t) = \frac{V_f(t)}{2(R/Q)} \left(\frac{1}{Q_L} - 2i \frac{\Delta \omega_f}{\omega_{\rm rf}} \right) + \frac{I_{\rm b,rf}(t)}{2} + \frac{dV_f(t)}{dt} \frac{1}{\omega_{\rm rf}(R/Q)}$$
$$I_{gd}(t) = \frac{V_d(t)}{2(R/Q)} \left(\frac{1}{Q_L} - 2i \frac{\Delta \omega_d}{\omega_{\rm rf}} \right) + \frac{I_{\rm b,rf}(t)}{2} + \frac{dV_d(t)}{dt} \frac{1}{\omega_{\rm rf}(R/Q)}$$

Energy balance $V_{\text{tot}} \cos \phi_s = N_f A_f \cos(\phi_s - \phi_b + \phi_{cf} + \phi_f) + N_d A_d \cos(\phi_s - \phi_b + \phi_{cd} + \phi_d)$

To calculate beam-induced modulation we assume:

- $I_{gf,d}(t) = \text{constant} \text{no beam loading compensation}$
- $V_{f,d}(t) = A_{f,d}(t)e^{i\phi_f(t) + i\phi_{cf,d}}, I_{b,rf}(t) = A_b(t)e^{-i\phi_s + i\phi_b(t)}$

Then, system of equations is linearized to obtain transfer functions: $\frac{a_{Vf,d}}{a_b}, \frac{\phi_{f,d}}{a_b}, \frac{\phi_b}{a_b}$ $A_{f,d} = V_{cav}(1 + a_{Vf,d}), A_b(t) = |F_b|I_{b,dc}(1 + a_b)$

Bunch-by-bunch spread of cavity parameters

Bunch-by-bunch spread of beam parameters

For identical rings, transients can be compensated by matching abort gaps (e.g., in PEPII, LHC,...)

Imbalance of charge results in different detuning for electron and positron beams

 \rightarrow Slightly different transients (most critical during filling)

Peak-to-peak spread of \sim 30% in synchrotron tune and bunch length can have a significant impact on beam stability

Bunch-by-bunch spread of beam parameters

For identical rings, transients can be compensated by matching abort gaps (e.g., in PEPII, LHC,...)

Imbalance of charge results in different detuning for electron and positron beams

 \rightarrow Slightly different transients (most critical during filling)

Peak-to-peak spread of ~30% in synchrotron tune and bunch length can have a significant impact on beam stability \rightarrow We lose a factor of 15 wrt to 1-cell RF system

Critical impact of spread

Interplay between beam-beam and coupling impedance

 \rightarrow No stable region for a horizontal tune can be found in presence of large Q_s spread. Possible mitigations need to be studied

Possible scenarios

Peak-to-peak beam phase spread $\propto \Delta \omega_{opt} \tau_{gap} N_{tot} / (N_f - N_d)$

- 1. New filling scheme (e.g., 40 trains of 280 bunches)
 - \rightarrow Spread is reduced by a factor of ~3
 - → Gaps become twice shorted (~600 ns) most likely unfeasible for the extraction system (1 us kicker rise time)
- 2. Higher total RF voltage for Z?

Optimal quality factor $Q_{L,opt} = \frac{V_{cav}^2 N_{tot}}{2P_{SR}(R/Q)}$

Since $Q_{L,opt}$ should be the same for Z, W, and ZH, V_{cav} cannot be changed

$$\rightarrow \text{Optimal detuning is also unchanged} \quad \Delta \omega_{\text{opt}} = -\frac{\omega_{\text{rf}}(R/Q)|F_b|I_{b,dc}}{2V_{\text{cav}}} \sqrt{1 - \frac{U_0^2}{e^2V_{\text{cav}}^2N_{\text{tot}}^2}}$$

The only knob is to change $N_f - N_d$ by changing V_{tot} : $V_{\text{cav}} = \frac{V_{\text{tot}}}{N_{\text{tot}}} \sqrt{\frac{U_0^2}{e^2V_{\text{tot}}^2} + \left(1 - \frac{U_0^2}{e^2V_{\text{tot}}^2}\right) \frac{N_{\text{tot}}^2}{\left(N_f - N_d\right)^2}}$

9

Higher RF voltage

-3.6/+1.6 %

Impact on parameters (oversimplified scaling)

FCC-ee collider parameters for the GHC lattice as of Aug. 2, 2024.						
Beam energy	[GeV]	45.6	80	120	182.5	
Layout			PA31-3.0			
# of IPs				4		
Circumference	[km]		90.658728			
Bend. radius of arc dipole	[km]		10.021			
Energy loss / turn	[GeV]	0.0390	0.369	1.86	9.94	
SR power / beam	[MW]		50			
Beam current	[mA]	1283	135	26.8	5.0	
Colliding bunches / beam		11200	1852	300	64	
Colliding bunch population	$[10^{11}]$	2.16	1.38	1.69	1.48	
Hor. emittance at collision ε_x	[nm]	0.70	2.16	0.66	1.51	
Ver. emittance at collision ε_y	[pm]	1.9	2.0	1.0	1.36	
Lattice ver. emittance $\varepsilon_{y,\text{lattice}}$	[pm]	0.87	1.20	0.57	0.94	
Arc cell		Long	90/90 90/90			
Momentum compaction α_p	$[10^{-6}]$	28.	28.67 7.52		7.52	
Arc sext families		7.	5		146	
$\beta_{x/y}^*$	[mm]	110 / 0.7	220 / 1	240 / 1	1	
Transverse tunes $Q_{x/y}$		218.158 / 222.220	218.185 / 222.2	0.0/0.4 98.2	σ_ α ——— 🗌	
Chromaticities $Q'_{x/y}$		0 / +5	0 / +5	3.3/9.4	$U_Z \sim \sqrt{U}$	
Energy spread (SR/BS) σ_{δ}	[%]	0.039 / 0.110	0.069 / 0.105	0.102 / 0.176	√ ^V tot	
Bunch length (SR/BS) σ_z	[mm]	5.57 / 15.6	3.46 / 5.28	· · · · · ·	1.91 / 2.32	
RF voltage 400/800 MHz	[GV]	0.079 / 0	1.00 / 0	0.195/0	2.1 / 9.20	
Harm. number for 400 MHz			1	1200		
RF frequency (400 MHz)	MHz		40			
Synchrotron tune Q_s		0.0289	0.0809	0.0483	0.0881	
Long. damping time	[turns]	1171	218		19.4	
RF acceptance	[%]	1.06	3.32	2 25 6	3.06	
Energy acceptance (DA)	[%]	± 1.0	±1.0	2.55 .9	-2.8/+2.5	
Beam crossing angle at IP θ_x	[mrad]		E	E15	N	
Crab waist ratio	[%]	70	55	FO	r n p	
Beam-beam ξ_x/ξ_y^a		0.0022 / 0.0977		x/0.162 🔤	$\xi_{v} \propto -136$	
Piwinski angle $(\theta_x \sigma_{z,BS}) / \sigma_x^*$		26.6	3.6		σ_{7}	
Lifetime $(q + BS + lattice)$	[sec]	11800	4500	6000	1100	
Lifetime (lum) ^b	[sec]	1330	960	600	Ice	
Luminosity / IP	$[10^{34}/cm^2s]$	143	20	7.5	$L \sim \zeta_{V}$	

K. Oide, 2024

X-Z instability (K. Ohmi, 2016)

Higher Q_s

→ stronger low order resonance but more space available between them Bunches are ~50% shorter (assuming the same σ_{δ})

→ stronger beamstrahlung

 $(\xi_y \text{ increase is smaller})$

→ stronger impact of longitudinal impedance?

Resonant depolarization

Figure of merit SMI = $\nu_s \sigma_\delta / Q_s \sim 1.3$ -1.4 for baseline

 \rightarrow is reduced to ~0.85 (SMI<1 is preferred)

Many more aspects to be re-analyzed...

^aincl. hourglass.

^bonly the energy acceptance is taken into account for the cross section, no beam size effect.

Summary

Reverse Phase Operation (RPO) mode aims to avoid hardware modification of RF system between Z, W, and ZH modes

- Synchrotron frequency and bunch length spread due to transient beam loading could be a potential showstopper.
- Possible mitigations are reduction of gap length or increase of total RF voltage
- Would it be possible to find a new parameter set before end Feasibility Study?

Thank you for your attention!

Backup slides

Parameter sensitivity of RPO

Transients for baseline scenario (56 1-cell cavities)

Global parameters (Déjà vu)

August 2024

	1000000	tor parameters for er	
Beam energy	[GeV]	45.6	
Layout			
# of IPs			
Circumference	[km]		
Bend. radius of arc dipole	[km]		
Energy loss / turn	[GeV]	0.0390	
SR power / beam	[MW]		
Beam current	[mA]	1283	
Colliding bunches / beam		11200	
Colliding bunch population	$[10^{11}]$	2.16	1
Hor. emittance at collision ε_x	[nm]	0.70	
Ver. emittance at collision ε_y	[pm]	1.9	
Lattice ver. emittance $\varepsilon_{y,\text{lattice}}$	[pm]	0.87	
Arc cell		Long	90/90
Momentum compaction α_p	$[10^{-6}]$	28	.67
Arc sext families		7	5
$\beta_{x/y}^*$	[mm]	110 / 0.7	1
Transverse tunes $Q_{x/y}$		218.158 / 222.220	218.1
Chromaticities $Q'_{x/y}$		0 / +5	
Energy spread (SR/BS) σ_{δ}	[%]	0.039 / 0.110	0.0
Bunch length (SR/BS) σ_z	[mm]	5.57 / 15.6	3.
RF voltage 400/800 MHz	[GV]	0.079 / 0	
Harm. number for 400 MHz			
RF frequency (400 MHz)	MHz		
Synchrotron tune Q_s		0.0289	
Long. damping time	[turns]	1171	
RF acceptance	[%]	1.06	
Energy acceptance (DA)	[%]	± 1.0	
Beam crossing angle at IP θ_x	[mrad]		
Crab waist ratio	[%]	70	1
Beam-beam ξ_x / ξ_y^a		0.0022 / 0.0977	0.0
Piwinski angle $(\theta_x \sigma_{z,BS}) / \sigma_x^*$		26.6	
Lifetime $(q + BS + lattice)$	[sec]	11800	
Lifetime (lum) ^b	[sec]	1330	
	[1034/am 2]	1.42	

March 2022

 $\beta_x^* = 10 \, \text{cm} \, @\text{Z}$

Beam energy	[GeV]	45.6	80
Layout			PA31
# of IPs			4
Circumference	$[\mathrm{km}]$	91.174117	
Bending radius of arc dipole	$[\mathrm{km}]$		9.9
Energy loss / turn	[GeV]	0.0391	0.370
SR power / beam	[MW]		5(
Beam current	[mA]	1280	135
Bunches / beam		10000	880
Bunch population	$[10^{11}]$	2.43	2.91
Horizontal emittance ε_x	[nm]	0.71	2.16
Vertical emittance ε_y	[pm]	1.42	4.32
Arc cell		Long 90/90	
Momentum compaction α_p	$[10^{-6}]$	28.5	
Arc sextupole families		75	
$\beta_{x/y}^*$	[mm]	100 / 0.8	200 / 1.0
Transverse tunes/IP $Q_{x/y}$		53.563 / 53.600	
Energy spread (SR/BS) σ_{δ}	[%]	$0.038 \ / \ 0.132$	$0.069 \ / \ 0.154$
Bunch length (SR/BS) σ_z	[mm]	4.38 / 15.4	3.55 / 8.01
RF voltage 400/800 MHz	[GV]	0.120 / 0	1.0 / 0
Harmonic number for 400 MHz	1216		
RF freuquency (400 MHz)	MHz	399.994581	
Synchrotron tune Q_s		0.0370	0.0801
Long. damping time	[turns]	1168	217
RF acceptance	[%]	1.6	3.4
Energy acceptance (DA)	[%]	± 1.3	± 1.3
Beam-beam ξ_x/ξ_y^a		0.0023 / 0.135	0.011 / 0.125
Luminosity / IP	$[10^{34}/cm^2s]$	182	19.4
Lifetime (q + BS)	[sec]	-	
Lifetime (lum)	[sec]	1129	1070

Impact on beam stability (first thoughts)

Interplay between beam-beam and coupling impedance

CEPC CDR

Ox

X-Z instability

Higher $Q_s \rightarrow$ lower order resonance (stronger)

Higher $V_{tot} \rightarrow \sim 50\%$ shorter bunches (assuming the same dp/p) \rightarrow stronger beamstrahlung (ξ_{ν} increase) Stabilizing role of chromaticity is not fully understood

Resonant depolarization

Figure of merit SMI = nus * (sigma_E/E) / Qs ~ 1.3-1.4 for baseline \rightarrow reduces ~0.85 (SMI<1 is preferred)

Changing optics

New $\alpha_p = 53.7e-6$

0.9

320 MV

Motivation

RF power for SRF cavities with circulators is minimized for optimal parameters:

ain d

Optimal detuning
$$\Delta \omega_{opt} = -\frac{\omega_{rf}(R/Q)|F_b|I_{b,dc}\sin\varphi_s}{2V_{cav}}$$

Optimal quality factor $Q_{ext,opt} = \frac{V_{cav}}{|F_b|(R/Q)I_{b,dc}\cos\varphi_s}$

(D/O)|E|I

Keeping 2-cell cavities for Z, W, H, (and $t\overline{t}$):

→ Large range for $Q_{ext,opt}$ adjustment (a factor of ~75-600) starting from ~5 × 10³: possible FPC solutions was studied (S. Gorgi Zadeh and E. Montesinos, CERN SRF, 2024; see also slides of F. Gerigk, FCC Week 2024) → Incresed detuning enhances instability due to fundamental mode

Can the voltage per cavity be increased for Z mode?

$$F_b = 2 \frac{\mathcal{F}[\lambda(t)]_{\omega = \omega_{\rm rf}}}{\mathcal{F}[\lambda(t)]_{\omega = 0}}$$

Beam loading model: main equation

Fixed parameters are V, (R/Q), Q_0 , ω_{rf} , $I_{b,rf}$, while V, $\Delta \omega$, and Q_{ext} can be adjusted See, e.g., J. Tückmantel, CERN Report No. CERN-ATS-Note-2011- 002 TECH, 2011

RF power requirements

Constraints:

- The same $Q_{\text{ext,opt}}$ for all cavities to avoid a movable fundamental power coupler design

- The same $P_{g,opt}$ to have the identical power sources and uniform power distribution (role of variations is under study)

$$Q_{\text{ext,opt}} = \frac{|V_{\text{cav}}|}{|F_b|(R/Q)I_{b,\text{dc}}\cos(\phi_s + \phi_c)}$$

$$P_{g,\text{opt}} = \frac{|V_{\text{cav}}||F_b|I_{b,\text{dc}}\cos(\phi_s + \phi_c)}{2}$$

 \rightarrow Cavity voltage must be the same for all cavities: $\cos(\phi_s + \phi_{foc}) = \cos(\phi_s + \phi_{defoc}) \rightarrow \phi_{foc} = -2\phi_s - \phi_{defoc}$

Starting with energy
gain per turn
$$N_{\text{foc}}|V_{\text{cav}}|\cos(\phi_s + \phi_{\text{foc}}) + N_{\text{defoc}}|V_{\text{cav}}|\cos(\phi_s + \phi_{\text{defoc}}) = V_{\text{tot}}\cos\phi_s$$
 $\times \frac{|F_b|I_{b,\text{dc}}}{2}$
 $N_{\text{foc}}\frac{|V_{\text{cav}}||F_b|I_{b,\text{dc}}\cos(\phi_s + \phi_{\text{foc}})}{2} + N_{\text{defoc}}\frac{|V_{\text{cav}}||F_b|I_{b,\text{dc}}\cos(\phi_s + \phi_{\text{defoc}})}{2} = \frac{|F_b|I_{b,\text{dc}}}{2}V_{\text{tot}}\cos\phi_s$ $\cos\phi_s = \frac{U_0}{V_{\text{tot}}} |F_b| \approx 2$
 $N_{\text{foc}}P_{g,\text{foc}} + N_{\text{defoc}}P_{g,\text{defoc}} = I_{b,\text{dc}}U_0 = P_{\text{SR}}$
 $P_{g,\text{opt}} = \frac{P_{SR}}{N_{\text{tot}}}$

→ No RF power overshoot is needed for RPO if optimal detuning and optimal quality factor are used

Reverse phasing mode equations

Preservation of energy gain

Phases

Preservation of synchrotron tune

 $N_{\text{foc}}|V_{\text{cav}}|\cos(\phi_s + \phi_{\text{foc}}) + N_{\text{defoc}}|V_{\text{cav}}|\cos(\phi_s + \phi_{\text{defoc}}) = V_{\text{tot}}\cos\phi_s$

 $N_{\text{foc}}|V_{\text{cav}}|\sin(\phi_s + \phi_{\text{foc}}) + N_{\text{defoc}}|V_{\text{cav}}|\sin(\phi_s + \phi_{\text{defoc}}) = V_{\text{tot}}\sin\phi_s$

$$\rightarrow \text{Cavity voltage} \qquad |V_{\text{cav}}| = \frac{V_{\text{tot}}}{N_{\text{tot}}} \sqrt{\frac{U_0^2}{V_{\text{tot}}^2} + \left(1 - \frac{U_0^2}{V_{\text{tot}}^2}\right)} \frac{N_{\text{tot}}^2}{(N_{\text{foc}} - N_{\text{defoc}})^2}$$
Optimal detuning
$$\Delta \omega_{\text{opt}} = -\frac{\omega_{\text{rf}}(R/Q)|F_b|I_{b,\text{dc}}}{2V_{\text{cav}}} \sqrt{1 - \frac{U_0^2}{V_{\text{cav}}^2N_{\text{tot}}^2}}$$

See, also <u>A. Blednykh et al, EIC-ADD-TN-33, 2022</u>

$$\phi_{\text{foc}} = -\phi_s + \arccos\left(\frac{V_{\text{tot}}\cos\phi_s}{N_{\text{tot}}V_{\text{cav}}}\right) \qquad \phi_{\text{defoc}} = -\phi_s - \arccos\left(\frac{V_{\text{tot}}\cos\phi_s}{N_{\text{tot}}V_{\text{cav}}}\right)$$

The aim is to keep V_{cav} , $P_{g,opt}$, and $Q_{ext,opt}$ for Z, W, and ZH modes \rightarrow Cavity voltage can be change in discrete steps of $N_{foc} - N_{defoc} = 2, 4, ...$

Derivations for arbitrary cavity phase (1/2)

. \

Generator current I_{g}

Complex quantities: I_g , V, and $I_{b,rf} \rightarrow I_g = |I_g|e^{i\phi_L}$, V =

$$|I_g|e^{i\phi_L} = \frac{|V_{cav}|e^{i\phi_c}}{2(R/Q)} \left(\frac{1}{Q_{ext}} - 2i\frac{\Delta\omega}{\omega_{rf}}\right) + \frac{|F_b|I_{b,dc}e^{-i\phi_s}}{2}$$
$$I_g|e^{i\phi_L - i\phi_c} = \frac{|V_{cav}|}{2(R/Q)} \left(\frac{1}{Q_{ext}} - 2i\frac{\Delta\omega}{\omega_{rf}}\right) + \frac{|F_b|I_{b,dc}e^{-i\phi_s - i\phi_c}}{2}$$

 $\times e^{-i\phi_c}$

Then splitting in real and imaginary parts:

Derivations for arbitrary cavity phase (2/2)

$$\left|I_{g}\right|e^{i\phi_{L}-i\phi_{c}} = \frac{\left|V_{cav}\right|}{2(R/Q)Q_{ext}} + \frac{\left|F_{b}\right|I_{b,dc}\cos(\phi_{s}+\phi_{c})}{2} - i\left[\frac{\left|V_{cav}\right|}{(R/Q)}\frac{\Delta\omega}{\omega_{rf}} + \frac{\left|F_{b}\right|I_{b,dc}\sin(\phi_{s}+\phi_{c})}{2}\right]$$

$$P_{g} = \frac{1}{2} (R/Q) Q_{\text{ext}} |I_{g}|^{2}$$

$$= \frac{1}{2} (R/Q) Q_{\text{ext}} \left[\frac{|V_{\text{cav}}|}{2(R/Q)Q_{\text{ext}}} + \frac{|F_{b}|I_{b,\text{dc}}\cos(\phi_{s} + \phi_{c})}{2} \right]^{2} + \text{Minimized for } Q_{\text{ext,opt}} = \frac{|V_{\text{cav}}|}{|F_{b}|(R/Q)I_{b,\text{dc}}\cos(\phi_{s} + \phi_{c})}$$

$$+ \frac{1}{2} (R/Q) Q_{\text{ext}} \left[\frac{|V_{\text{cav}}|}{(R/Q)} \frac{\Delta \omega}{\omega_{\text{rf}}} + \frac{|F_{b}|I_{b,\text{dc}}\sin(\phi_{s} + \phi_{c})}{2} \right]^{2} + 0 \text{ for } \Delta \omega_{\text{opt}} = -\frac{\omega_{\text{rf}}(R/Q)|F_{b}|I_{b,\text{dc}}\sin(\phi_{s} + \phi_{c})}{2|V_{\text{cav}}|}$$

Setting $\phi_c = 0$ recovers classical equations for optimal parameters Adjusting ϕ_c , $Q_{\text{ext,opt}}$ can be modified to meet certain constraints

The minimum power
$$P_{g,opt} = \frac{|V_{cav}||F_b|I_{b,dc}\cos(\phi_s + \phi_c)}{2}$$

Preliminary results

 \rightarrow RPO is under evaluation potentially allowing for the same optimal quality factor for Z, W, and H modes

Reverse phasing mode equations

Constraints: $|V_{cav}|$ and $P_{g,opt}$ are the same for focusing and defocusing cavities $P_{g,opt} = \frac{|V_{cav}||F_b|I_{b,dc}\cos(\phi_s + \phi_c)}{2}$ $\rightarrow \cos(\phi_s + \phi_{\text{foc}}) = \cos(\phi_s + \phi_{\text{defoc}}) \rightarrow \phi_{\text{foc}} = -2\phi_s - \phi_{\text{defoc}}$ Preservation of energy gain $N_{\text{foc}}|V_{\text{cav}}|\cos(\phi_s + \phi_{\text{foc}}) + N_{\text{defoc}}|V_{\text{cav}}|\cos(\phi_s + \phi_{\text{defoc}}) = V_{\text{tot}}\cos\phi_s$ $N_{\text{foc}}|V_{\text{cav}}|\sin(\phi_s + \phi_{\text{foc}}) + N_{\text{defoc}}|V_{\text{cav}}|\sin(\phi_s + \phi_{\text{defoc}}) = V_{\text{tot}}\sin\phi_s$ Preservation of synchrotron tune **RPO** Classical $Q_{\text{ext,opt}} = \frac{V_{\text{cav}}^2 N_{\text{tot}}}{V_{\text{tot}} (R/Q) |F_h| I_{h, dc} \cos \phi_c}$ $Q_{\text{ext,opt}} = \frac{V_{\text{cav}}}{|F_h| (R/Q) I_{\text{hdc}} \cos \phi_c}$ Optimal quality factor $\Delta\omega_{\rm opt} = -\frac{\omega_{\rm rf}(R/Q)|F_b|I_{b,\rm dc}}{2V_{\rm cav}} \sqrt{1 - \frac{\cos^2\phi_s V_{\rm tot}^2}{V_{\rm cav}^2 N_{\rm tot}^2}} \quad \Delta\omega_{\rm opt} = -\frac{\omega_{\rm rf}(R/Q)|F_b|I_{b,\rm dc}\sin\phi_s}{2V_{\rm cav}}$ **Optimal detuning**

Reduced Pedersen model

