Muon Beam Studies in the H4 beam line and the Gamma Irradiation Facility (GIF++)

Rachel Margraf Supervisor: Nikolaos Charitonidis

Goliath Field Mapping performed in collaboration with:

- Nikos Charitonidis & Yiota Chatzidaki (EN-EA-LE)
- EP/DT magnet group (Felix Bergsma & Pierre-Ange Giudici),
- Henric Wilkens and the kind support of RD51 Collaboration (Eraldo Oliveri & Yorgos Tsipolitis) and GIF++.
- Field mapping interpolation script written by Marcel Rosenthal

Muons in H4

- The muon beam in the H4 beam line is shared by both PPE134 and GIF++ experimental areas
- PPE134 contains the GOLIATH magnet. When GOLIATH is on, the muon beam delivered to GIF++ is deflected from its normal center
- Goal: simulate trajectory of muon beam delivered to GIF++

August 11, 2017

Modeling the H4 Beam Line - Steps

- Model shielding upstream GIF++ Hall using G4beamline software
- Simulate exact muon beam position under several different conditions:
 - GOLIATH at -1.5,-1, 0, 1, 1.5T
 - XTDV Dumps open/closed
- Measure the magnetic field map for Goliath and refine simulations using this map – Ongoing!

August 11, 2017

XTDV beam dumps modeled in "open" (left) and "closed" (right) configurations

Rachel Margraf

G4beamline Model of H4 Beam Line

QNL Quadrupoles 16a & 16b

Collimators 9 & 10

August 11, 2017

022.628

4

XTDV Beam Dumps

GIF++

Analysis Points

August 11, 2017

Dump XTDV 022.628

Position "Back Wall GIF"

Cs Source Position "Center GIF"

Position "Front Nook GIF" Position "Front Wall GIF"

Dump XTDV 022.610 Position "Upstream GIF"

Upstream Sensors

August 11, 2017

μ^+ and μ^- map

Similar for all Conditions

Upstream Sensors

August 11, 2017

π^+ and π^- map

Upstream Locations

August 11, 2017

μ^+ and μ^- x distribution

Upstream Locations π^+ and π^- x distribution

August 11, 2017

Rachel Margraf

Upstream Locations Momentum of μ^+ and μ^-

August 11, 2017

Similar for all Conditions

Rachel Margraf

Upstream Locations Momentum of π⁺ and π⁻

Similar for all Conditions

GIF++ Interesting Points

August 11, 2017

Beam Trajectory within GIF++ changes for **GOLIATH Strength**

Upstream GIF

Distance from Centerline (mm)

 \succ

μ^+ and μ^- map

August 11, 2017

Rachel Margraf

Front Wall GIF

μ^+ and μ^- map

August 11, 2017

Front Nook GIF

μ^+ and μ^- map

August 11, 2017

Rachel Margraf

Center GIF

μ^+ and μ^- map

August 11, 2017

Back Wall GIF

μ^+ and μ^- map

August 11, 2017

Rachel Margraf

Locations with Usable Beam

With these simulations, we can advise correct equipment placement to receive muons and gamma photons while Goliath is on

August 11, 2017

Momentum

Momentum, Back Wall GIF

-1.0T

August 11, 2017

Events

Pion Contamination

OT, Both Dumps Closed

Back Wall GIF π^+,π^- (10⁶ Events) Entries = 26 Events 000 Y Distance from Centerline (mm) Y Distance from Centerline (mm) Mean x (mm) = 1157.42 ± 3136.67 Mean y (mm) = 434.485 ± 916.18 1500 1500 π⁺,π⁻, Bin>30 , p>20 GeV/c \mathbf{x}_{i+1} Entries = 0 Mean x (mm) = 0 \pm 0 1000 1000 Mean y (mm) = 0 ± 0 100 500 500 0 12 -500 -500 10 -1000 –1000 --1500 –1500 --2000 -2000 2000 4000 6000 X Distance from Centerline (mm) -4000 -4000 -20000 (26 events)

August 11, 2017

π^+ and π^- map

0T, Both Dumps Open

Rachel Margraf

Pion Contamination

-1.0T, Both Dumps Closed

CERN

August 11, 2017

π^+ and π^- map

-1.0T, Both Dumps Open

Rachel Margraf

Summary

- GOLIATH field affects the muon beam at GIF++.
 - Minus polarity pushes the muons into the free space and not into the wall \rightarrow Preferred for GIF++!
 - Wide spectrum of the muons' momentum arriving at GIF++
 - Pion contamination negligible when the XTDV's are "IN", or when GOLIATH is on

Document reference

Final Remarks

- Last step is to incorporate the correct field map of Goliath into the G4beamline simulation
- Allows users of Goliath and GIF++ to share a muon beam on the H4 beam line
- Future analysis could also examine additional steering of the muon beam by placing another dipole downstream Goliath

Rachel Margraf

Collimators 9 & 10 Position "Downstream Collimator" (5mm after collimator) Goliath (Coil diameter 3.4m)

Position "Upstream Goliath" Upstream edge of coil Position "Downstream Goliath" Downstream edge of coil

August 11, 2017

Dump XTDV 022.628

Position "Back Wall GIF"

Cs Source Position "Center GIF"

Position "Front Nook GIF" Position "Front Wall GIF"

Dump XTDV 022.610 Position "Upstream GIF"

Questions?

Mapping of Goliath

- To refine these and future simulations, need up to date magnetic field map of Goliath
- I spent several days working with a team to measure the magnetic field of Goliath (July 4-6, Aug 2-4)

August 11, 2017

Field Maps

I constructed **ROOT** macros to plot our field measurements, and utilized Mayavi and Matplotlib Python packages to produce vector plots of our field map

August 11, 2017

Vertical Sensors Magnetic Field Map (1.5T Design Setting)