Jitter amplification in booster linac

Yongke Zhao

For discussion only

13/09/2024

Structure parameters

• CLIC L-band parameters

Parameter	Unit	BC1
Structure name		CLIC L-band
RF frequency	GHz	1.999
Structure length	m	1.5
Number of cells		30
Phase advance per cell	0	120
Working RF phase	0	90
First iris radius	mm	20
Last iris radius	mm	14
First iris thickness	mm	8
Last iris thickness	mm	8

• BL lattice (baseline)

- 8 structures per FODO cell
- Distance between quadrupoles: 7.5 m
- 272 structures. G = 15.089 MV/m

Used in BC1 & booster linac (BL)

• CLIC RTML beam parameters

Parameter	Unit	Entrance	Exit	
Number of bunches per train		352	2	
Number of particles per bunch		5.2×10^9		
Beam energy	GeV	2.86	9	
Bunch length (σ_z)	$\mu { m m}$	1800	~ 70	
Energy spread (σ_E/E)	%	0.12	< 1.7	
Horizontal emittance $(\epsilon_{n,x})$	$nm \cdot rad$	700	< 800	
Vertical emittance $(\epsilon_{n,y})$	$\mathrm{nm}{\cdot}\mathrm{rad}$	5	< 6	

Jitter definition and tolerance

Test 0

- No tracking. Average of 5 randomly jittered trains (352 random bunches per train)
- Plotting

E.g. J = 0.10, means, $\langle x, px \rangle = 0.10^* \sigma(x, px)$

- a) projected emittance growth as a function of jitter
- b) jitter tolerance for x & y

Test 0

- No tracking. Average of 5 randomly jittered trains (352 random bunches per train)
- Plotting
 - c) jitter amplification tolerance for x & y

Jitter amplification tolerance definition in this case:

$$\implies F = \frac{J_{\text{max}}}{J_{\text{initial}}} = \sqrt{\frac{Budget}{\varepsilon_0 \cdot J_{\text{initial}}^2}} \qquad \implies \qquad F_{\text{x,max}} \sim 4, F_{\text{y,max}} \sim 12 @ J_{\text{initial}} = 0.05$$
$$F_{\text{x,max}} \sim 2, F_{\text{y,max}} \sim 5 @ J_{\text{initial}} = 0.1$$

Short-range wakefield effect

Test 1

- Short-range wakefield effect in BL. Full single bunch tracking simulation
- Jitter considered: J = 0.10, that is, $\langle x, px \rangle = 0.10^* \sigma(x, px)$
- Jitter amplification factor definition in this case:

J: jitter, A: action (area)

- W/o SRWF, zero E spread: $F_{x,s} = 1.0000$
- W/o SRWF, 1.2% E spread: F_{x,s} = 0.9862
 - E spread helps to damp the effect (BNS damping)
- W/ SRWF, 1.2% E spread: F_{x,s} = 0.9951 (Nominal)

Long-range wakefield effect – kick on next bunch only

Test 2.0

- Long-range wakefield effect in BL. Single particle calculation using Daniel's formulae
- Transverse kick on next bunch only (a_k = 0 when k ≠ 1)
- Jitter amplification factor definition in this case:

F_{x,c} = 1.062 @ ±5 V/pC/m/mm F_{x,rms} = 31.9 @ ±5 V/pC/m/mm F_{x,worst} = 178.4 @ ±5 V/pC/m/mm

Test 2.1.1a

- Long-range wakefield effect in BL. Single particle tracking simulation
- Jitter considered: J = 0.10, that is, $\langle x, px \rangle = 0.10^* \sigma(x, px)$
- Transverse kick on next bunch only. Coherent jitter with 8 specific trains (like Test 1)
- Jitter amplification factor definition in this case:

Test 2.1.1b

- Long-range wakefield effect in BL. Single particle tracking simulation
- Jitter considered: J = 0.10, that is, $\langle x, px \rangle = 0.10^* \sigma(x, px)$
- Transverse kick on next bunch only. Coherent jitter with 8 specific trains (like Test 1)
- Jitter amplification factor definition in this case:

Using maximum F of all bunches

Test 2.1.2a

- Long-range wakefield effect in BL. Single particle tracking simulation
- Jitter considered: J = 0.10, that is, $\langle x, px \rangle = 0.10^* \sigma(x, px)$
- Transverse kick on next bunch only. Incoherent jitter with 1000 random trains
- Jitter amplification factor definition in this case:

Test 2.1.2b

- Long-range wakefield effect in BL. Single particle tracking simulation
- Jitter considered: J = 0.10, that is, $\langle x, px \rangle = 0.10^* \sigma(x, px)$
- Transverse kick on next bunch only. Incoherent jitter with 1000 random trains
- Jitter amplification factor definition in this case:

Using maximum F of all bunches

Test 2.2.1a

- Long-range wakefield effect in BL. Full bunch tracking simulation. Short-range wake considered
- Jitter considered: J = 0.10, that is, $\langle x, px \rangle = 0.10^* \sigma(x, px)$
- Transverse kick on next bunch only. Coherent jitter with 8 specific trains
- Jitter amplification factor definition in this case:

Test 2.2.1a (checking vertical plane)

- Long-range wakefield effect in BL. Full bunch tracking simulation. Short-range wake considered
- Jitter considered: J = 0.10, that is, $\langle x, px \rangle = 0.10^* \sigma(x, px)$
- Transverse kick on next bunch only. Coherent jitter with 8 specific trains
- Jitter amplification factor definition in this case:

Using average F of all bunches

Test 2.2.1b

- Long-range wakefield effect in BL. Full bunch tracking simulation. Short-range wake considered
- Jitter considered: J = 0.10, that is, $\langle x, px \rangle = 0.10^* \sigma(x, px)$
- Transverse kick on next bunch only. Coherent jitter with 8 specific trains
- Jitter amplification factor definition in this case:

Using maximum F of all bunches

Test 2.2.2.1a

- Long-range wakefield effect in BL. Full bunch tracking simulation. Short-range wake considered
- Jitter considered: J = 0.10, that is, $\langle x, px \rangle = 0.10^* \sigma(x, px)$
- Transverse kick on next bunch only. Incoherent jitter with 100 random trains
- Jitter amplification factor definition in this case:

Using average F of all bunches

Test 2.2.2.1b

- Long-range wakefield effect in BL. Full bunch tracking simulation. Short-range wake considered
- Jitter considered: J = 0.10, that is, $\langle x, px \rangle = 0.10^* \sigma(x, px)$
- Transverse kick on next bunch only. Incoherent jitter with 100 random trains
- Jitter amplification factor definition in this case:

Using maximum F of all bunches

Test 2.2.2.2a

- Long-range wakefield effect in BL. Full bunch tracking simulation. Short-range wake considered
- Jitter considered: J = 0.10, that is, $\langle x, px \rangle = 0.10^* \sigma(x, px)$
- Transverse kick on next bunch only. Incoherent jitter with 100 random trains
- Jitter amplification factor definition in this case:

Using average F of all bunches

 $F_{\rm rms} = \frac{F_{W\neq0}}{F_{W=0}} \text{, where } F = \frac{1}{N_{\rm bunches}} \sum \frac{J_{\rm final}}{J_{\rm initial}} = \frac{1}{N_{\rm bunches}} \sum \frac{\sqrt{\frac{\varepsilon_{\rm total}}{\varepsilon_{\rm single}} - 1}}{\sqrt{\frac{\varepsilon_{\rm total}}{\varepsilon_{\rm single}} - 1}} = \frac{1}{N_{\rm bunches}} \sum \sqrt{\frac{\varepsilon_{\rm total}}{\varepsilon_{\rm total}} - \varepsilon_{\rm single}}{\sqrt{\frac{\varepsilon_{\rm total}}{\varepsilon_{\rm single}} - 1}}} = \frac{1}{N_{\rm bunches}} \sum \sqrt{\frac{\varepsilon_{\rm total}}{\varepsilon_{\rm total}} - \varepsilon_{\rm single}}{\varepsilon_{\rm total}} - \varepsilon_{\rm single}}}$

In progress ...

Seems quite difficult. Need to store very huge data on disk and much longer time for each train or Condor job. I will see if it's possible. Instead of using projected emittance of all trains, it's much easier to use projected emittance of all bunches in a train, where I just need to store a number instead of all bunches. See Test 2.2.2.3.

Test 2.2.2.2b

- Long-range wakefield effect in BL. Full bunch tracking simulation. Short-range wake considered
- Jitter considered: J = 0.10, that is, $\langle x, px \rangle = 0.10^* \sigma(x, px)$
- Transverse kick on next bunch only. Incoherent jitter with 100 random trains
- Jitter amplification factor definition in this case:

Using maximum F of all bunches

In progress ...

Seems quite difficult. Need to store very huge data on disk and much longer time for each train or Condor job. I will see if it's possible. Instead of using projected emittance of all trains, it's much easier to use projected emittance of all bunches in a train, where I just need to store a number instead of all bunches. See Test 2.2.2.3.

Test 2.2.2.3a

- Long-range wakefield effect in BL. Full bunch tracking simulation. Short-range wake considered
- Jitter considered: J = 0.10, that is, $\langle x, px \rangle = 0.10^* \sigma(x, px)$
- Transverse kick on next bunch only. Incoherent jitter with 100 random trains
- Jitter amplification factor definition in this case:

F = 0 means job is killed probably due to long simulation time. Not considered in calculation

Test 2.2.2.3b

- Long-range wakefield effect in BL. Full bunch tracking simulation. Short-range wake considered
- Jitter considered: J = 0.10, that is, $\langle x, px \rangle = 0.10^* \sigma(x, px)$
- Transverse kick on next bunch only. Incoherent jitter with 100 random trains
- Jitter amplification factor definition in this case:

Using maximum F of all trains

Long-range wakefield effect – kick on all bunches

Test 3.0

Single particle calculation using Daniel's formulae. Same definitions and conifgurations as Test 2.0

Sum(Abs(W)) = 540.52 V/pC/m/mm

a1 = 0.53

Very very large jitter amplifications!

Test 3.1

• Using wakefield directly from Ednan:

Full bunch tracking simulation. Same definitions and conifgurations as Test 2.2.1 and Test 2.2.2.1

Sum(Abs(W)) = 540.52 V/pC/m/mm

• F_{x,c} = 5.1 (average) or 22.5 (maximum)

Large jitter amplifications!

10³

Yongke ZHAO

CLIC injector discussion

Test 3.2 – Wake scan

• Wake formula assumption:

CLIC injector discussion

Test 3.2 – Wake scan

- Range
 - k: [0:1:5] V/pC/m/mm
 - alpha: [10:10:50] ns

$$W_{\perp(t)} = \frac{k}{1 + \frac{t - T}{\alpha}}, \qquad t \ge T = 0.5 \text{ ns}$$

Coherent

Full bunch tracking simulation. Same definitions

and conifgurations as Test 2.2.1 and Test 2.2.2.3

(but only 10 trains simulated)

Incoherent

Very very large jitter amplifications!

Summary (table in next slide)

- Test 0: general study. Jitter budgets are 0.2σ for x and 0.6σ for y (assuming projected emittance budgets are same with budget numbers in PIP report).
 Jitter amplification (F) budgets are plotted as functions of initial jitter, e.g. Fx < 4, Fy < 12 @ 0.05σ, Fx < 2, Fy < 5 @ 0.1σ
- Test 1: F = 0.995 due to short-range wakefield for full bunch tracking (w/ BNS damping)
- Test 2.0: F plotted as kick on next bunch only using Daniel's analytic formulae for single particle, for x. E.g. Fc = 1.06, Frms = 32, Fworst = 178 @ 5
 V/pC/m/mm
- Test 2.1.1a: Fc (average of all bunches) plotted as kick on next bunch only for single particle tracking, using action (area), for x. E.g. Fc = 0.996 @ 5
 V/pC/m/mm
- Test 2.1.1b: Fc (maximum of all bunches) plotted as kick on next bunch only for single particle tracking, using action (area), for x. E.g. Fc = 2.0 @ 5
 V/pC/m/mm
- Test 2.1.2a: Frms (average of all bunches) plotted as kick on next bunch only for single particle tracking, using action (area), for x. E.g. Frms = 2.4 @ 5 V/pC/m/mm
- Test 2.1.2b: Frms (maximum of all bunches) plotted as kick on next bunch only for single particle tracking, using action (area), for x. E.g. Frms = 2.7 @ 5
 V/pC/m/mm
- Test 2.2.1a: Fc (average of all bunches) plotted as kick on next bunch only for full bunch tracking, using action (area), for x. E.g. Fc = 1.01 @ 5 V/pC/m/mm
- Test 2.2.1b: Fc (maximum of all bunches) plotted as kick on next bunch only for full bunch tracking, using action (area), for x. E.g. Fc = 2.0 @ 5
 V/pC/m/mm
- Test 2.2.2.1a: Frms (average of all bunches) plotted as kick on next bunch only for full bunch tracking, using action (area), for x. E.g. Frms = 2.5 @ 5 V/pC/m/mm
- Test 2.2.2.1b: Frms (maximum of all bunches) plotted as kick on next bunch only for full bunch tracking, using action (area), for x. E.g. Frms = 3.7 @ 5
 V/pC/m/mm
- Test 2.2.2.2a and Test 2.2.2.2b (average and maximum of all bunches) using projected emittance of all trains in progress (seems difficult technically)
- Test 2.2.2.1a: Frms (average of all trains) plotted as kick on next bunch only for full bunch tracking, using projected emittance of all bunches, for x. E.g. Frms = 2.2 @ 5 V/pC/m/mm
- Test 2.2.2.1a: Frms (maximum of all trains) plotted as kick on next bunch only for full bunch tracking, using projected emittance of all bunches, for x. E.g.
 Frms = 2.4 @ 5 V/pC/m/mm
- Test 3.0: F calculated using Daniel's analytic formulae for single particle calculation, with full wakefield map, for x. E.g. Fc = 1.0E+07, Frms = 1.0E+09, Fworst = 3.6E+11
- Test 3.1: F estimated for full bunch tracking, with full wakefield map, and plotted as function of bunch number, for x. E.g. Fc = 5.1 (average) or 22.5 (maximum), Frms = 26.2 (average) or 62.2 (maximum)
- Test 3.2: F estimated for full bunch tracking, with wakefield envelop assumption, and plotted as function of parameters 2D scan, for x. Very very large F is found

Summary table

F for x @ 5 V/pC/m/mm due to long-range wake (with kick on next bunch only)	Fc	Frms	Fworst
Analytic usingDaniel's formulae	1.06	32	178
Single particle tracking	0.996 (average) 2.0 (maximum)	2.4 (average) 2.7 (maximum)	-
Full bunch tracking - Using action for Frms (100 trains, to increase statistics?)	1.01 (average) 2.0 (maximum)	2.5 (average) 3.7 (maximum)	-
Full bunch tracking - Using projected emittance for Frms – Using projection emittance of all trains	-	In progress (difficult)	-
Full bunch tracking - Using projected emittance for Frms – Using projection emittance of all bunches	-	2.2 (average) 2.4 (maximum)	-
F for x due to long-range wake (full fieldmap)	Fc	Frms	Fworst
Analytic usingDaniel's formulae	1.0E+07	1.0E+09	3.6E+11
Single particle tracking	-	-	-
Full bunch tracking - Using action for Frms (100 trains, to increase statistics?)	5.1 (average) 22.5 (maximum)	26.2 (average) 62.2 (maximum)	-

F for x due to long-range wake (2D scan)	Fc	Frms	Fworst
Full bunch tracking - Using action for Frms (10 trains, to increase statistics?)	>> 100	>> 100	-

Conclusions & open questions

- How to estimate budgets for jitter amplifications?
- How to define jitter amplification? Action or projected emittance? Square root or not?
- How to estimate jitter amplification? Formula, single particle tracking or full bunch tracking (statistic for full bunch might be low, need to increase)? Average or maximum?
- Do we need to estimate Fworst from simulation? How? And budgets for Fworst?
- Small kick on next bunch only seems not a very big problem? E.g. Wt(next bunch) < 3
 V/pC/m/mm?
- Full wakefield or using full envelope is very problematic with very huge jitter amplifications, for current situation. Damping seems necessary?

