

CERN and the Environment **Town Hall meeting** Water

Ingo Ruehl / EN-CV

8 November 2024

CERN Environmental Protection Steering Board

Context

Project launched in 2016

- Reduce effluent water
- Improve effluent water quality
- Contain water consumption
 Completion during LS3

ONE Obligation

Respect the regulations regarding the quality of effluent water and reducing the discharge of effluent water into the 'Nant d'Avril'

History

ONE Objective

Keep the water consumption at the level (+5% max) of pre LS2 despite:

- LIU power / performance upgrade
- HL-LHC performance upgrade
- HostLab detector upgrade

CERN water supply

- ~99% by Services Industriels de Genève (SIG)
- Source Lac léman
 - Used for drinking water and sanitary installations
 - Used as raw / make up water for primary water cooling and other industrial services
- 2.8 Mm³ in 2023 (out of 58 Mm³ distributed by SIG)
- Peak consumption at ~1260 m³/h
- <u>Water consumption is a direct function of</u> <u>Physics programme and climate</u>
- ~1% by Régie des Eaux Gessiennes
- Source Nappe phréatique
- Used only for drinking water and sanitary installations

	l/s	m³/ h		
Network capacity	1500	5400		
CERN allocation	500	1800		
CERN max use (~)	350	1260		
Others	1000	3600		

CERN and the Environment Town Hall

8 November 2024

What are we using the water for?

- 2018 reference year for RUN2
- ~1.6 Mm³ for PS, SPS and LHC cooling towers
 - Evaporation
 - Blowdown water discharged into nearby rivers
- ~1.3 Mm³ for other cooling/industrial services
 - Discharged into nearby rivers
- ~0.5 Mm³ for Meyrin/Prévessin sanitary use
 - Evacuated via wastewater circuit
- Total ~3.4 Mm³

Water consumption

Why cooling tower water treatment ?

For Safety and technical reasons:

- Minimise the risk of
 - corrosion
 - scaling
 - fouling
 - microbiological build-up

- Minimise the risk of
 - LEGIONELLA
 - Applying French law
 - Regular monitoring / laboratory tests
 - Annual emptying and cleaning of every cooling tower

Side effect – Blowdown water with residual chemicals that is discharged into the Nant d'Avril

Solution - New specific water treatment station(s)

Solution to treat blowdown water quality <u>AND</u> reduce water consumption

- Recycling of blowdown water by adding a specific water treatment plant
- Strong reduction of effluent water
- Residual effluent discharged into wastewater network
- No more discharge of cooling water from SPS and LHC cooling towers into the Nant d'Avril
- Solution applicable for bigger circuits with sufficient space

Implementation - cooling tower of the SPS North Area

• Cooling capacity = 57 MW; Water flow = 2400 m3/h

	2018	2022	∆ 2022 vs 2018	2023	∆ 2023 vs 2018
Make up	164 841 m3	145 530 m3	-12%	98 115 m3	-41%
Effluent – blowdown water	32 283 m3	10 109 m3	-69%	4 969 m3	- 85%
Reused	0 m3	26 778 m3		14 366 m3	
Average power in summer	ND	21 MW		16 MW	

- In 2023 14'366 m³ of blowdown water recycled and fed back into the cooling towers
- Resulted in a strong decrease of the effluent water quantity
- Reduction of the water consumption despite the increase of the thermal load
- Need to develop a set of more 'meaningful' performance indicators

Objective: single water treatment plant for LHC and SPS

- One treatment plant for all LHC and SPS circuits
- Recycled water will be used in the cooling towers closest to the treatment plant (SF1, SF17 and SPS)

10 out of 27 Cooling Towers but with a cooling capacity of 354 MW (~72%)

New treatment plant for SPS and LHC cooling tower blowdown water

Objectives 2025 (completed)

Optimisation of all (17) 'smaller' cooling towers was done between 2016 and 2023

- AD, LEIR / LINAC, PS TT2 / EAST Area, POPS PS, Booster, ...
- Installation and deployment of a new demineralised water production network on the Meyrin site
- ~10% less water consumption, less water treatment and ~80% less effluent water

Specific blowdown water treatment pilot plant

- Design study
- Implementation at CT2 (SPS / NA)
- Successful operation
- Confirmation of the expected results

Horizon 2030

- Installation of a new water treatment plant at LHC PA1
 - No more effluent water coming from the SPS and LHC cooling towers will be discharged into the Nant d'Avril
 - Recycling of ~300'000 m³/year for the cooling towers

Closing last major open cooling circuit

 AD complex - will reduce the water consumption by about 140'000 m³/year

Optimisation, sustainability and efficiency aspects - new technologies

Case by case studies for new installations and upgrade of existing installations

Implementing KPIs

• "Indicateur de performance aquatique"

- Water management has always been a priority for the Organization
- With the new projects' respective upgrades, CERN cooling need has increased and will increase even more in the coming years
- CERN set up a project in 2016 in close collaboration with the local authorities to improve the quality and to reduce the quantity of effluent water as well as to contain the increase of the water consumption
- The modifications and optimisations works have shown the expected positive results
- The major investment for a completely new water treatment plant for the blowdown water of LHC and SPS cooling towers will be installed in 2027 – 2028
- More to come ...

home.cern