Signatures of gluon saturation from structure-function measurements arxiv:2203.05846

Nestor Armesto¹ Tuomas Lappi²³ Heikki Mäntysaari²³ Hannu Paukkunen ^{2'3} Mirja Tevio ²³

¹Instituto Galego de Física de Altas Enerxías IGFAE, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia-Spain

 2 Department of Physics, University of Jyväskylä, P.O. Box 35, 40014 University of Jyväskylä, Finland

³Helsinki Institute of Physics, P.O. Box 64, 00014 University of Helsinki, Finland

15.11.2024

- Color Glass Condensate (CGC) framework describes non-linear effects (gluon saturation)
	- \triangleright Bjorken-x dependence from Balitsky-Kovchegov (BK) evolution equation

- Color Glass Condensate (CGC) framework describes non-linear effects (gluon saturation)
	- \triangleright Bjorken-x dependence from Balitsky-Kovchegov (BK) evolution equation
- In collinear factorization framework the Q^2 evolution comes from Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution equations

- Color Glass Condensate (CGC) framework describes non-linear effects (gluon saturation)
	- \triangleright Bjorken-x dependence from Balitsky-Kovchegov (BK) evolution equation
- In collinear factorization framework the Q^2 evolution comes from Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution equations
- To see saturation effects on experimental data we have to distinguish the genuine difference between DGLAP and BK dynamics

- Color Glass Condensate (CGC) framework describes non-linear effects (gluon saturation)
	- \triangleright Bjorken-x dependence from Balitsky-Kovchegov (BK) evolution equation
- In collinear factorization framework the Q^2 evolution comes from Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution equations
- To see saturation effects on experimental data we have to distinguish the genuine difference between DGLAP and BK dynamics
- **•** Both frameworks require input which are fitted to the same experimental data \rightarrow The results do not deviate dramatically and distinguishing DGLAP/BK dynamics is difficult

¹ We want to be as independent as possible from the initial condition parametrization

- **■** We want to be as independent as possible from the initial condition parametrization
- ² We "force" collinear factorization and CGC $F_{2,\mathrm{L}}$ to agree in a line in (x,Q^2) plane

Matching line in (x, Q^2) plane

- **■** We want to be as independent as possible from the initial condition parametrization
- ² We "force" collinear factorization and CGC $F_{2,\mathrm{L}}$ to agree in a line in (x,Q^2) plane
- Differences between the two frameworks outside the chosen line quantify signatures of gluon saturation

Matching line in (x, Q^2) plane

- **■** We want to be as independent as possible from the initial condition parametrization
- ² We "force" collinear factorization and CGC $F_{2,\mathrm{L}}$ to agree in a line in (x,Q^2) plane
- Differences between the two frameworks outside the chosen line quantify signatures of gluon saturation
- ⁴ With differences we can quantify the precision needed at EIC and LHeC/FCC-he to distinguish saturation effects

Matching line in (x, Q^2) plane

$F_{2,L}$ with collinear factorization vs. CGC

Collinear factorization:

- Collinear factorization $F_{2,L}$ using APFEL [\[1\]](#page-31-0) and LHAPDF [\[2\]](#page-31-1) libraries
- NNPDF31 nlo as 0118 1000 as proton PDF set
- nNNPDF20_nlo_as_0118_Au197 as nuclear PDF set
- **Both PDF sets have 1000 Monter** Carlo replicas

Color Glass Condensate (CGC):

- Dipole picture $F_{2,L}$ fitted to HERA data
- Leading order total photon-nucleus cross sections
- Running coupling BK evolution $¹$ </sup>

• We match collinear factorization $F_{2,L}$ to corresponding CGC structure functions in a line in (x,Q^2) plane

 $¹T$. Lappi and H. Mäntysaari. "Single inclusive particle production at high energy from HERA</sup> data to proton-nucleus collisions". In: Phys. Rev. D 88 (2013), p. 114020. arXiv: [1309.6963](https://arxiv.org/abs/1309.6963) [\[hep-ph\]](https://arxiv.org/abs/1309.6963)

PDF matching

Bayesian reweighting method [\[4,](#page-31-2) [5\]](#page-31-3):

For each PDF replica f_k we define

$$
\chi_k^2 = \sum_{i=1}^{N_{\text{data}}} \frac{(\mathcal{O}_i - \mathcal{O}_i[f_k])^2}{(\delta_{\text{BK}} \mathcal{O}_i)^2}
$$

PDF matching

Bayesian reweighting method [\[4,](#page-31-2) [5\]](#page-31-3):

For each PDF replica f_k we define

$$
\chi_k^2 = \sum_{i=1}^{N_{\text{data}}} \frac{(\mathcal{O}_i - \mathcal{O}_i[f_k])^2}{(\delta_{\text{BK}} \mathcal{O}_i)^2}
$$

and so called **Giele-Keller** weights [\[6\]](#page-31-4)

$$
\omega_k = \frac{e^{-\frac{1}{2}\chi_k^2}}{\frac{1}{N_{\rm rep}}\sum_{k=1}^{N_{\rm rep}}e^{-\frac{1}{2}\chi_k^2}},
$$

which always sum up to unity,

$$
\frac{1}{N_{\rm rep}}\sum_{k=1}^{N_{\rm rep}}\omega_k=1\,.
$$

Giele-Keller weights favor replicas with $\chi^2 \approx 0$.

PDF matching

Bayesian reweighting method [\[4,](#page-31-2) [5\]](#page-31-3):

For each PDF replica f_k we define

$$
\chi_k^2 = \sum_{i=1}^{N_{\text{data}}} \frac{(\mathcal{O}_i - \mathcal{O}_i[f_k])^2}{(\delta_{\text{BK}} \mathcal{O}_i)^2}
$$

and so called **Giele-Keller** weights [\[6\]](#page-31-4)

$$
\omega_k = \frac{e^{-\frac{1}{2}\chi_k^2}}{\frac{1}{N_{\rm rep}}\sum_{k=1}^{N_{\rm rep}}e^{-\frac{1}{2}\chi_k^2}},
$$

which always sum up to unity,

$$
\frac{1}{N_{\rm rep}}\sum_{k=1}^{N_{\rm rep}}\omega_k=1\,.
$$

Giele-Keller weights favor replicas with $\chi^2 \approx 0$.

Then we define reweighted observables as

$$
\mathcal{O}^{\mathrm{Rev}} = \frac{1}{\mathcal{N}_{\mathrm{rep}}} \sum_{k=1}^{\mathcal{N}_{\mathrm{rep}}} \omega_k \mathcal{O}[f_k]
$$

We also construct a PDF set matched to BK in (x, Q^2) line (Back up)

We want to do the matching in a common region of validity for both frameworks:

- We want to do the matching in a common region of validity for both frameworks:
	- \blacktriangleright In a region $Q^2 \gg Q^2_s$ where saturation effects are moderate

- We want to do the matching in a common region of validity for both frameworks:
	- \blacktriangleright In a region $Q^2 \gg Q_s^2$ where saturation effects are moderate
	- \blacktriangleright With small enough α_{s} log($Q^{2})$ so that DGLAP evolution dynamics is reliable

- We want to do the matching in a common region of validity for both frameworks:
	- \blacktriangleright In a region $Q^2 \gg Q_s^2$ where saturation effects are moderate
	- \blacktriangleright With small enough α_{s} log($Q^{2})$ so that DGLAP evolution dynamics is reliable
	- \blacktriangleright Also, α_s log($Q^2)$ can not be so large that DGLAP evolution would dominate

- We want to do the matching in a common region of validity for both frameworks:
	- \blacktriangleright In a region $Q^2 \gg Q_s^2$ where saturation effects are moderate
	- \blacktriangleright With small enough α_{s} log($Q^{2})$ so that DGLAP evolution dynamics is reliable
	- \blacktriangleright Also, α_s log($Q^2)$ can not be so large that DGLAP evolution would dominate
	- \longrightarrow We choose to do the matching on points $Q^2(x) \approx 10 \times Q_s^2(x)$

Proton matching

The structure functions for proton as a function of x at $Q^2 \approx 10 Q_\mathrm{s}^2(\mathsf{x})$

• Separate matching for proton F_2 and F_L are both almost perfect

Relative difference of proton $\mathit{F}_{2}^{\mathrm{Rev}}$ I_2^{Rew} to F_2^{BK} 2

- For proton F_2 the relative difference is only a few percent
- Generically slower x dependence in BK evolution

Relative difference of proton $\mathit{F}_{\text{\tiny L}}^{\text{Rev}}$ L^{Rew} to $\mathcal{F}_{\text{L}}^{\text{BK}}$ L

• For proton F_L the relative difference is:

- ► $\lesssim 10\%$ for $x=10^{-3}...5.6\times10^{-3}$ (EIC)
- \blacktriangleright \leq 40% for $x = 10^{-5}...10^{-4}$ (LHeC/FCC-he)

 \bullet F_{L} is much more sensitive to saturation than F_{2}

Nuclear matching

 $(a) F₂$ (b) F_L The structure functions for ^{197}Au as a function of x at $Q^2 \approx 10 Q_\text{s}^2(\text{x})$.

• Nuclear reweight is not as successful as for proton since there are not enough Monte Carlo replicas to get a precise match

Relative difference of nuclear F_2 to $F_2^{\rm BK}$ 2

- \bullet For nuclear F_2 the relative difference is $\lesssim 10\%$
- The relative difference is much larger than in the proton case
	- \blacktriangleright It is expected since saturation effects are stronger in nuclei

Relative difference of nuclear $\mathit{F}_{\text{L}}^{\text{Rev}}$ L^{Rew} to $\mathcal{F}_{\text{L}}^{\text{BK}}$ L

For nuclear F_L the relative difference is:

- $\lesssim 15\%$ for $x = 10^{-3}...10^{-2}$ (EIC)
- \lesssim 60% for $x = 10^{-5}...10^{-4}$ (LHeC/FCC-he)

Including small- x resummation (work in progress)

- At small x large logarithms $log(1/x)$ in collinear framework −→ need to resum
- Resummation should take DGLAP evolved F_2 and F_L closer to BK values
- With resummation can distinguish between BFKL and saturation effects
- \bullet How to implement small-x resummation:
	- ▶ Use "NNPDF31sx_nnlonllx_as_0118" PDF set for proton
	- In Use APFEL+HELL implementation to enable resummation in F_2 and F_L

Including small- x resummation (work in progress)

- \bullet Differences are larger than w/o resummation
- Reweight not as successful due to limited number of replicas ($N_{\rm rep}=100$) \rightarrow can not yet draw strong conclusions
- Have to improve reweighting (e.g. by scaling the replicas)

- With Bayesian reweighting we match proton/nuclear DGLAP structure functions to corresponding BK values in a line $Q^2 \approx 10 \times Q_s^2(\mathsf{x})$
- The deviation outside the matching line describes signatures of saturation

- With Bayesian reweighting we match proton/nuclear DGLAP structure functions to corresponding BK values in a line $Q^2 \approx 10 \times Q_s^2(\mathsf{x})$
- The deviation outside the matching line describes signatures of saturation
- In order to see saturation in protons in EIC
	- \blacktriangleright F_{L} the measurements have to be $\mathcal{O}(10\%)$
	- \blacktriangleright F₂ the measurements have to be $\mathcal{O}(1\%)$

- With Bayesian reweighting we match proton/nuclear DGLAP structure functions to corresponding BK values in a line $Q^2 \approx 10 \times Q_s^2(\mathsf{x})$
- The deviation outside the matching line describes signatures of saturation
- In order to see saturation in protons in EIC
	- \blacktriangleright F_{L} the measurements have to be $\mathcal{O}(10\%)$
	- \blacktriangleright F₂ the measurements have to be $\mathcal{O}(1\%)$
- \bullet In LHeC/FCC-he the differences are a few times larger

- With Bayesian reweighting we match proton/nuclear DGLAP structure functions to corresponding BK values in a line $Q^2 \approx 10 \times Q_s^2(\mathsf{x})$
- The deviation outside the matching line describes signatures of saturation
- In order to see saturation in protons in EIC
	- \blacktriangleright F_{L} the measurements have to be $\mathcal{O}(10\%)$
	- \blacktriangleright F₂ the measurements have to be $\mathcal{O}(1\%)$
- \bullet In LHeC/FCC-he the differences are a few times larger
- Saturation is stronger in heavy nuclei than in proton

- With Bayesian reweighting we match proton/nuclear DGLAP structure functions to corresponding BK values in a line $Q^2 \approx 10 \times Q_s^2(\mathsf{x})$
- The deviation outside the matching line describes signatures of saturation
- In order to see saturation in protons in EIC
	- \blacktriangleright F_L the measurements have to be $\mathcal{O}(10\%)$
	- \blacktriangleright F₂ the measurements have to be $\mathcal{O}(1\%)$
- \bullet In LHeC/FCC-he the differences are a few times larger
- Saturation is stronger in heavy nuclei than in proton
- \bullet F_{L} is more sensitive to saturation than F_{2}
- \bullet Have to improve reweighting with small- \times resummation

Ref[erences](https://doi.org/10.1016/j.cpc.2014.03.007)

- [1] Valerio Bertone, Stefano Carrazza, and Juan Rojo. "APFEL: A PDF Evolution Library with [QED](https://arxiv.org/abs/1412.7420) corrections". In: Comput. Phys. Commun. 185 (2014), pp. 1647-1668. DOI: 10.1016/j.cpc.2014.03.007. arXiv: 1310.1394 [hep-ph].
- [2] Andy Buckley et al. "LHAPDF6: parton density access in the LHC precision era". In: Eur. Phys[. J.](https://arxiv.org/abs/1309.6963) C 75 (2015), p. 132. doi: 10.1140/epjc/s10052-015-3318-8. arXiv: 1412.7420 [hep-ph].
- [3] T. Lappi and H. Mäntysaari. "Single inclusive particle production at high energy from HERA data to proton-nucleus collisions". In: Phys. Rev. D 88 (2013), p. 114020. arXiv: 1309.6963 [hep-[ph\]](https://arxiv.org/abs/1012.0836).
- [4] Richard D. Ball et al. "Reweighting [NNPDFs: the W lepton asymmetry".](https://doi.org/10.1016/j.nuclphysb.2011.03.017) In: Nucl. Phys. B 849 (2011). [Erratum: Nucl.Phys.B 854, 926–927 (2012), Erratum: Nucl.Phys.B 855, 927–928 (2012)], pp. 112-143. DOI: 10.1016/j.nuclphysb.2011.03.017. arXiv: 1012.0836 [hep-ph].
- [5] Richard D. Ball et al. ["Reweighting and Unweighti](https://doi.org/10.1016/j.nuclphysb.2011.10.018)ng of Par[ton Distributions and the LH](https://arxiv.org/abs/1108.1758)C W lepton asymmetry data". In: Nucl. Phys. B 855 (2012), pp. 608-638. DOI: 10.1016/j.nuclphysb.2011.10.018. arXiv: 1108.1758 [hep-ph].
- [6] Walter T. Giele and Stephane Keller. "Implications of hadron collider observables on parton [distribution function uncertainties".](https://doi.org/10.1103/PhysRevD.58.094023) In: Phys. Rev. D [58 \(1998\), p. 094023.](https://arxiv.org/abs/hep-ph/9803393) DOI: 10.1103/PhysRevD.58.094023. arXiv: hep-ph/9803393.
- [7] Hannu Paukkunen and Pia Zurita. "PDF reweighting in the Hessian matrix approach". In: JHEP 12 (2014), p. 100. doi: 10.10[07/JHEP12\(2014\)100](https://doi.org/10.1007/JHEP12(2014)100). arXiv: 1402.6623 [he[p-ph\]](https://arxiv.org/abs/1402.6623).

Back up: Fixing matching parameters

- We want to match the reweighted values to BK values as closely as possible
	- \blacktriangleright Finite number of replicas (1000) prevent the absolute match
- Effective number of replicas [\[4,](#page-31-2) [7\]](#page-31-5)

$$
\textit{N}_{\mathrm{eff}} = \text{exp} \, \frac{1}{\textit{N}_{\mathrm{rep}}} \sum_{k=1}^{\textit{N}_{\mathrm{rep}}} \omega_k \, \text{ln} \left(\frac{\textit{N}_{\mathrm{rep}}}{\omega_k} \right)
$$

gives an approximation on how many PDF replicas have significant weight

We adjust $\delta_{\rm BK}$ in χ^2_k in order to fix $N_{\text{eff}} \approx 10$

$$
\chi_k^2 = \sum_{i=1}^{N_{\text{data}}} \frac{(y_i - y_i[f_k])^2}{(\delta_{\text{BK}} y_i)^2}
$$

$$
\omega_k = \frac{e^{-\frac{1}{2}\chi_k^2}}{\frac{1}{N_{\text{rep}}}\sum_{k=1}^{N_{\text{rep}}}e^{-\frac{1}{2}\chi_k^2}}
$$

$$
\mathcal{O}^{\text{Rew}} = \frac{1}{N_{\text{rep}}}\sum_{k=1}^{N_{\text{rep}}} \omega_k \mathcal{O}[f_k]
$$

Back up: Weighted proton PDFs

- Reweighting has slightly stronger effect on gluon distribution than on up quark
- Moderate effects expected since NNPDF3.1 PDFs are fitted to same HERA data as BK boundary conditions

Back up: Weighted nuclear PDFs

- Nuclear PDFs are affecter more than proton PDFs
- Reweighting has stronger effect on gluon distribution than on up quark

Back up: Reweight with smaller x region

Back up: Reweight with smaller x region

The relative difference $(F_2^{\text{BK}} - F_2^{\text{Rew}})/F_2^{\text{BK}}$ with nuclear reweight in region $x = 10^{-4}...10^{-2}$.

The relative difference $(F_{\rm L}^{\rm BK}-F_{\rm L}^{\rm Rew})/F_{\rm L}^{\rm BK}$ with nuclear reweight in region $x=10^{-4}...10^{-2}.$

Back up: Reweight in line $Q^2(\textsf{x})\approx 27\times Q^2_{\textsf{s}}$ $\frac{12}{5}(x)$

Back up: Reweight in line $Q^2(\textsf{x})\approx 27\times Q^2_{\textsf{s}}$ $\frac{12}{5}(x)$

The relative difference $(F_2^{\rm BK}-F_2^{\rm Rew})/F_2^{\rm BK}$ with nuclear reweight in line $Q^2(x)\approx 27\times Q_s^2(x)$.

(a) F_L (b) F_L The relative difference $(F_{\rm L}^{\rm BK}-F_{\rm L}^{\rm Rew})/F_{\rm L}^{\rm BK}$ with nuclear reweight in line $Q^2(x)\approx 27\times Q_{\rm s}^2(x)$.

Back up: Weights

Giele-Keller weights which favor replicas with $\chi^2/\mathcal{N}_{\mathrm{data}}\approx 0$

$$
\omega_k = \frac{e^{-\frac{1}{2}\chi_k^2}}{\frac{1}{N_{\text{rep}}}\sum_{k=1}^{N_{\text{rep}}}e^{-\frac{1}{2}\chi_k^2}}
$$

Weights used with experimental data favor replicas with $\chi^2/N_{\rm data}\approx 1$

$$
\omega_k = \frac{(\chi_k^2)^{(N_{\text{data}}-1)/2} e^{-\frac{1}{2}\chi_k^2}}{\frac{1}{N_{\text{rep}}}\sum_{k=1}^{N_{\text{rep}}} (\chi_k^2)^{(N_{\text{data}}-1)/2} e^{-\frac{1}{2}\chi_k^2}}
$$