# **PDFs and SMEFT**

# A study of the interplay of Parton Distribution Functions (PDFs) and BSM signals in global fits

Work with Juan Rojo, Maria Ubiali and her group:

[Hammou et al., 2307.10370, JHEP]

[Costantini et al., 2402.03308]

[Hammou and Ubiali, 2410.00963]

[Hammou, Rojo and Ubiali, Forthcoming]

### Elie Hammou, University of Cambridge LHeC workshop, Nov 2024





**European Research Council** 

Established by the European Commission



PBSP X

### **Tension between high energy data** Comparison of PDFs trained on different datasets



2

### Impact on the PDFs **Comparison between SMEFT and SM PDFs**

Risk assessment

- Toy model with pseudodata
- Inject BSM physics
- Use it for PDF fit
- Compare PDF with baseline
- Can we recover the new physics?

[Hammou et al., 2307.10370, JHEP]







### **Missing new physics** Impact of the choice of PDF on SMEFT fits







### Future low energy data **Presentation of the future DIS programmes**

Electron Ion Collider

- $e^+/e^-$  projectiles
- proton, deuteron and heavy ions targets
- Hosted in Brookhaven
- Planned for 2030s
- Probes large-x, low-energy

Forward Physics Facility

- "Neutrino Ion collider" at the LHC
- $\nu/\bar{\nu}$  projectiles from proton beam
- proton, neutron and other nuclear targets
- FASER $\nu$  and SND@LHC already running
- Proposed expansion for HL-LHC run (FASER $\nu$ 2, AdvSND, FLArE)
- Probes large-x, low-energy
- <u>Constrain large-x antiquarks</u>

### Future low energy data **Kinematic coverage**







### **Recovering the signs of new physics BSM data versus SM theory predictions**



## Kinematic coverage of LHeC



- Probes large-x
- Probes higher energies
  - Bigger SMEFT corrections

Same problem as with **HL-LHC** data



### **Constraining PDFs with LHeC data** From literature 10.21468/SciPostPhys.7.4.051, Khalek, Bailey, Gao, Harland-Lang, Rojo PDFs at the HL-LHC (Q = 10 GeV) 1.15 PDF4LHC15 0.025 + LHeC [Jel] ( x, Q ) / g ( x, Q ) [ref] 0.95 1.1 + HL-LHC NNPDF4.0) 0.020 α(Ratio to 0.015 · 0.010 0.005 $10^{-4}$ $10^{-3}$ $10^{-5}$ 0.9 10<sup>-5</sup> 10<sup>-2</sup> 10<sup>-4</sup> $10^{-3}$ 10<sup>-1</sup> х



## **4-Fermion SMEFT corrections**

10.1103/PhysRevD.106.016006, Boughezal et al. 10.1103/PhysRevD.108.075007, Bissoloti, Boughezal and Simsek



**DIS Neutral-Current corrections** 



Charged-Current not yet computed



# Impact of $\mathcal{O}_{la}^3$ on EIC and LHeC projections



| - | x | = | 5.0e-06 |
|---|---|---|---------|
| - | x | = | 8.5e-06 |
|   | x | = | 2.0e-05 |
|   | x | = | 5.0e-05 |
| - | x | = | 8.5e-05 |
|   | x | = | 2.0e-04 |
| - | x | = | 5.0e-04 |
|   | x | = | 8.5e-04 |
|   | x | = | 2.0e-03 |
| - | x | = | 5.0e-03 |
| - | x | = | 8.5e-03 |
|   | x | = | 2.0e-02 |
|   | x | = | 5.0e-02 |
|   | x | = | 8.5e-02 |
|   | x | = | 2.0e-01 |
| ← | x | = | 3.0e-01 |
|   | x | = | 4.0e-01 |
| • | x | = | 5.0e-01 |
|   | x | = | 6.0e-01 |
|   | x | = | 7.0e-01 |
| - | x | = | 8.0e-01 |
|   |   |   |         |

### **Simultaneous fit of PDF and new physics** Presentation of the tool: SIMUnet



[Iranipour et Ubiali, 2201.07240]

# **Bounds on** $\mathcal{O}_{la}^3$ from LHeC projections







# Plan for the study

- Implement all NC SMEFT operators
- Compare SMEFT bounds with literature
- Add CC SMEFT corrections
- Fit simultaneously SMEFT and PDF
  - Assess impact on SMEFT bounds
  - Study PDF constraining potential
  - Assess BSM and PDF interplay at LHeC and FCC-eh

## Summary

- Fitting PDFs in the presence of new physics
  - Risk of absorbing it
- Adding low-energy large-x data
  - Reduce PDF uncertainty
  - Can prevent new physics absorption
- The LHeC study:
  - Reduces uncertainty in gluon PDF
  - SMEFT studies partially performed for Olq3
  - SMEFT-PDF interplay study necessary and ongoing

### You can contact me at: eh651@cam.ac.uk

### Thank you for your attention!



# Extra slides

### **New physics scenario:** W'Generation of the pseudodata







### [PBSP, forthcoming] **PDF** Fit ud + du luminosity $\sqrt{s} = 14 \text{ TeV}$ 1.10**EXAMPLE** Baseline (68% c.l.+1 $\sigma$ ) **Contaminated W=8e-5 (68% c.l.+1\sigma)** Contaminated W=8e-5, Simu fit (68% c.l.+1 $\sigma$ ) 1.05 iseline 1.00 σ Ш to Ratio 0.95 0.90 $0.85 + 10^{1}$ 10<sup>2</sup> 10<sup>3</sup> m<sub>X</sub> (GeV)

18



### **Constraining PDFs with LHeC data** From literature 10.21468/SciPostPhys.7.4.051, Khalek, Bailey, Gao, Harland-Lang, Rojo PDFs at the HL-LHC (Q = 10 GeV) 1.15 NNPDF4.0 (68% c.l.) PDF4LHC15 1.015 -NNPDF4.0 + LHeC (68% c.l.) [Jel] ( x, Q ) / g ( x, Q ) [ref] 0.95 1.010 1.1 + HL-LHC 0.41.005 1.000 to Ratio 0.995 0.990 0.985 - $10^{-4}$ $10^{-3}$ $10^{-5}$ 0.9 10<sup>-5</sup> 10<sup>-2</sup> $10^{-4}$ 10<sup>-1</sup> 10<sup>-3</sup>





### **Apparition of fake deviations** Impact on predictions for other sectors

Theory predictions (red band):

• SMEFT PDFs + SM

Data (blue dots):

• True PDFs + SM

Fake deviation from SM

Also seen in WH, WZ, ZH production

**HL-LHC** Projections



### **Impact on the PDF contamination** Flagging the BSM data

 $u\bar{u} + d\bar{d}$  luminosity  $\sqrt{s} = 14$  TeV





## List of deviations

|                               | HL-LHC                   |                   | Stat. improved           |              |
|-------------------------------|--------------------------|-------------------|--------------------------|--------------|
| Dataset                       | $\mid \chi^2/n_{ m dat}$ | $\mid n_{\sigma}$ | $\mid \chi^2/n_{ m dat}$ | $n_{\sigma}$ |
| $W^+H$                        | 1.17                     | 0.41              | 1.77                     | 1.97         |
| $W^-H$                        | 1.08                     | 0.19              | 1.08                     | 0.19         |
| $W^+Z$                        | 1.08                     | 0.19              | 1.49                     | 1.20         |
| $W^-Z$                        | 0.99                     | -0.03             | 1.02                     | 0.05         |
| ZH                            | 1.19                     | 0.44              | 1.67                     | 1.58         |
| $W^+W^-$                      | 2.19                     | 3.04              | 2.69                     | 4.31         |
| $\mathrm{VBF} \to \mathrm{H}$ | 0.70                     | -0.74             | 0.62                     | -0.90        |

### Shift of the contamination threshold From the fit quality

Not a complete solution:

Smaller deviations can still be absorbed

risk at higher BSM mass

Reduction of the "blindspot":



HL-LHC CC DY 14 TeV (EIC + FPF)





### Shift of the contamination threshold Impact on PDF luminosities

 $u\bar{u} + d\bar{d}$  luminosity  $\sqrt{s} = 14$  TeV



### $u\bar{d} + d\bar{u}$ luminosity $\sqrt{s} = 14$ TeV



### **New physics scenarios:** Z'Generation of the pseudodata $rac{1}{5}$

$$\mathscr{L}_{SMEFT}^{Z'} = \mathscr{L}_{SM} - \frac{g_{Z'}^2}{2M_{Z'}^2} J^{\mu}_{Y} J_{Y,\mu}$$

$$J_Y^{\mu} = \sum_{f} Y_f \bar{f} \gamma^{\mu} f$$



Impacts neutral current Drell-Yan processes

$$p\bar{p} \rightarrow l^+ l^-$$



# **Constraints from current data**

• New physics scenarios compared to constraints at 95% CL

1

-1

 $\hat{Y}$  (×10<sup>4</sup>)

3



 $Z^{'}$ 





